Biological Cybernetics

, Volume 98, Issue 2, pp 115–132 | Cite as

Through a barn owl’s eyes: interactions between scene content and visual attention

  • Shay Ohayon
  • Wolf Harmening
  • Hermann Wagner
  • Ehud Rivlin
Original Paper

Abstract

In this study we investigated visual attention properties of freely behaving barn owls, using a miniature wireless camera attached to their heads. The tubular eye structure of barn owls makes them ideal subjects for this research since it limits their eye movements. Video sequences recorded from the owl’s point of view capture part of the visual scene as seen by the owl. Automated analysis of video sequences revealed that during an active search task, owls repeatedly and consistently direct their gaze in a way that brings objects of interest to a specific retinal location (retinal fixation area). Using a projective model that captures the geometry between the eye and the camera, we recovered the corresponding location in the recorded images (image fixation area). Recording in various types of environments (aviary, office, outdoors) revealed significant statistical differences of low level image properties at the image fixation area compared to values extracted at random image patches. These differences are in agreement with results obtained in primates in similar studies. To investigate the role of saliency and its contribution to drawing the owl’s attention, we used a popular bottom-up computational model. Saliency values at the image fixation area were typically greater than at random patches, yet were only 20% out of the maximal saliency value, suggesting a top-down modulation of gaze control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahanger G, Little T (1996) A survey of technologies for parsing and indexing digital video. J Visual Commun Image Representation 7(1): 28–43CrossRefGoogle Scholar
  2. Baddeley RJ, Tatler BW (2006) High frequency edges (but not contrast) predict where we fixate: a Bayesian system identification analysis. Vis Res 46: 2824–2833PubMedCrossRefGoogle Scholar
  3. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. MIT, CambridgeGoogle Scholar
  4. Betsch BY, Einhäuser W, Körding KP, König P (2004) The world from a cats perspective statistics of natural videos. J Biol Cybern 90(1): 41–50CrossRefGoogle Scholar
  5. Buswell GT (1935) How people look at pictures. University of Chicago Press, ChicagoGoogle Scholar
  6. Dailianas A, Allen R, England P (1995) Comparisons of automatic video segmentation algorithms. In: Proceedings, SPIE photonics east’95: integration issues in large commercial media delivery systems, PhiladelphiaGoogle Scholar
  7. Du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63: 131–146PubMedGoogle Scholar
  8. Einhäuser W, König P (2006) Does luminance-contrast contribute to a saliency map for overt visual attention? Euro J Neurosci 17(5):1089–1097CrossRefGoogle Scholar
  9. Einhäuser W, Kruse W, Hoffmann K, König P (2006) Differences of monkey and human overt attention under natural conditions. Vis Res 46(8–9): 1194–1209PubMedCrossRefGoogle Scholar
  10. Field D (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4(12): 2379–2394PubMedGoogle Scholar
  11. Gonzalez RC, Woods RE (2001) Digital image processing. Addison-Wesley Longman Publishing Co., Inc., BostonGoogle Scholar
  12. Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, CambridgeGoogle Scholar
  13. Hayhoe MM, Ballard DH (2005) Eye movements in natural behavior. Trends Cogn Sci 9(4): 188–194PubMedCrossRefGoogle Scholar
  14. Henderson J, Hollingworth A (1999) High-level scene perception. Ann Rev Psychol 50: 243–271CrossRefGoogle Scholar
  15. Henderson J, Brockmole J, Castelhano M, Mack M (2007) Eye movements: a window on mind and brain. In: Visual saliency does not account for eye movements during visual search in real-world scenes. Elsevier,Oxford (in prep)Google Scholar
  16. Itti L (2005) Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis Cogn 12(6): 1093–1123CrossRefGoogle Scholar
  17. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11): 1254–1259CrossRefGoogle Scholar
  18. Johnen A, Wagner H, Gaese BH (2001) Spatial attention modulates sound localization in barn owls. J Neurophysiol 85(2): 1009–1012PubMedGoogle Scholar
  19. Kayser C, Nielsen KJ, Logothetis N (2006) Fixations in natural scenes: interaction of image structure and image content. Vis Res 46(16): 2535–2545PubMedCrossRefGoogle Scholar
  20. Knudsen E, Konishi M (1979) Mechanisms of sound localization in the barn owl (tyto alba). J Comp Physiol 133: 13–21CrossRefGoogle Scholar
  21. Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl tyto alba measured with the search coil technique. J Comp Physiol 133: 1–11CrossRefGoogle Scholar
  22. Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol (4):219–227Google Scholar
  23. Krieger G, Rentschler H, Hauske G, Schill K, Zetzsche C (2000) Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. Spatial Vis 13: 201–214CrossRefGoogle Scholar
  24. Land M, Hayhoe M (2001) In what ways do eye movements contribute to everyday activities? Vis Res 41(25–26):3559–3565PubMedCrossRefGoogle Scholar
  25. Liu G, Pettigrew J (2003) Orientation mosaic in barn owl’s visual wulst revealed by optical imaging: comparison with cat and monkey striate and extra-striate areas. Brain Res 961(1): 153–158PubMedCrossRefGoogle Scholar
  26. Mannan S, Ruddock K, Wooding D (1996) The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images. Spatial Vis 10(3): 165–188Google Scholar
  27. Marr D, Hildreth E (1980) Theory of edge detection. Proc Roy Soc Lond B207:187–217CrossRefGoogle Scholar
  28. Martin G (1982) An owls eye: schematic optics and visual performance in strix aluco. J Comp Physiol 145(341–349)Google Scholar
  29. Masino T, Knudsen EI (1990) Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345: 434–437PubMedCrossRefGoogle Scholar
  30. Masino T, Knudsen EI (1993) Orienting head movements resulting from electrical microstimulation of the brainstem tegmentum in the barn owl. J Neurosci 13: 351–370PubMedGoogle Scholar
  31. Navalpakkam V, Itti L (2005) Modeling the influence of task on attention. Vis Res 45(2): 205–231PubMedCrossRefGoogle Scholar
  32. Nieder A (1999) Mechanisms of depth perception in the visual forebrain of the behaving barn owl. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Mathematik, Informatik und NaturwissenschaftenGoogle Scholar
  33. Nieder A, Wagner H (1999) Perception and neuronal coding of subjective contours in the owl. Nat Neurosci 2: 660–663PubMedCrossRefGoogle Scholar
  34. Ohayon S, van der Willigen RF, Wagner H, Katsman I, Rivlin E (2006) On the barn owls visual pre-attack behavior: I. structure of head movements and motion patterns. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 192(9): 927–940CrossRefGoogle Scholar
  35. Parkhurst D, Niebur E (2003) Scene content selected by active vision. Spatial Vis 16(2): 125–154CrossRefGoogle Scholar
  36. Parkhurst D, Law K, Niebur E (2002) Modeling the role of salience in the allocation of overt visual attention. Vis Res 42(1): 107–123PubMedCrossRefGoogle Scholar
  37. Payne RS (1971) Acoustic location of prey by barn owls (tyto alba). J Exp Biol 54: 535–573PubMedGoogle Scholar
  38. Pettigrew J, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl. Science 193(4254): 675–678PubMedCrossRefGoogle Scholar
  39. Rao R, Zelinsky G, Hayhoe M, Ballard D (2002) Eye movements in iconic visual search. Vis Res 42(11): 1447–1463PubMedCrossRefGoogle Scholar
  40. Reinagel P, Zador A (1999) Natural scene statistics at the center of gaze. Network Comput Neural Syst 10: 1–10CrossRefGoogle Scholar
  41. Steinbach M, Money K (1973) Eye movements of the owl. Vis Res 13(1): 889–891PubMedCrossRefGoogle Scholar
  42. Treisman A, Gelade G (1980) A feature integration theory of attention. Cogn Psychol 12: 97–136CrossRefPubMedGoogle Scholar
  43. Tucker V (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203(24): 3745–3754PubMedGoogle Scholar
  44. Vanni-Mercier G, Pelisson D, Sakai K, Jouvet M (1994) Eye saccade dynamics during paradoxical sleep in the cat. Eur J Neurosci 6(8): 1298–1306PubMedCrossRefGoogle Scholar
  45. van der Willigen RF (2000) On the perceptual identity of depth vision in the owl. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Fakultät für Mathematik, Informatik und NaturwissenschaftenGoogle Scholar
  46. van der Willigen RF, Frost BJ, Wagner H (2001) Encoding of both vertical and horizontal disparity in random-dot stereograms by wulst neurons of awake barn owls. Visual Neurosci 18: 541–554CrossRefGoogle Scholar
  47. Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s space map. J Neurosci 13(1): 371–386PubMedGoogle Scholar
  48. Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Netw 19: 1395–1407PubMedCrossRefGoogle Scholar
  49. Wathey J, Pettigrew J (1989) Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl tyto alba. Brain Behav Evolut 33(5): 279–292Google Scholar
  50. Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (tyto alba). J Neurophysiol 96: 730–745PubMedCrossRefGoogle Scholar
  51. Yarbus A (1967) Eye movements and vision. Plenum Press, New YorkGoogle Scholar
  52. Zaharescu A, Rothenstein A, Tsotsos J (2004) Towards a biologically plausible active visual search model. In: ECCV Workshop on attention and performance in computer visionGoogle Scholar
  53. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11): 1330–1334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shay Ohayon
    • 1
  • Wolf Harmening
    • 2
  • Hermann Wagner
    • 2
  • Ehud Rivlin
    • 1
  1. 1.Israel Institute of Technology (Technion)HaifaIsrael
  2. 2.Institute of Biology IIRWTH UniversityAachenGermany

Personalised recommendations