Biological Cybernetics

, Volume 98, Issue 1, pp 61–74 | Cite as

Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes

Original Paper


Recent experimental studies have shown that astrocytes respond to external stimuli with a transient increase of the intracellular calcium concentration or can exhibit self-sustained spontaneous activity. Both evoked and spontaneous astrocytic calcium oscillations are accompanied by exocytosis of glutamate caged in astrocytes leading to paroxysmal depolarization shifts (PDS) in neighboring neurons. Here, we present a simple mathematical model of the interaction between astrocytes and neurons that is able to numerically reproduce the experimental results concerning the initiation of the PDS. The timing of glutamate release from the astrocyte is studied by means of a combined modeling of a vesicle cycle and the dynamics of SNARE-proteins. The neuronal slow inward currents (SICs), induced by the astrocytic glutamate and leading to PDS, are modeled via the activation of presynaptic glutamate receptors. The dependence of the bidirectional communication between neurons and astrocytes on the concentration of glutamate transporters is analyzed, as well. Our numerical results are in line with experimental findings showing that astrocyte can induce synchronous PDSs in neighboring neurons, resulting in a transient synchronous spiking activity.


Astzocyte Glutamate release Modeling PDS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguado F, Espinosa-Parrilla J, Carmona M and Soriano E (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22: 9430–9444 PubMedGoogle Scholar
  2. Angulo M, Kozlov A, Charpak S and Audinat E (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 24: 6920–6927 PubMedCrossRefGoogle Scholar
  3. Anlauf E and Derouiche A (2004). Astrocytic exocytosis vesicles and glutamate: a high-resolution immunofluorescence study. Glia 49: 96–106 CrossRefGoogle Scholar
  4. Araque A, Parpura V, Sanzgiri R and Haydon P (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10: 2129–2139 PubMedCrossRefGoogle Scholar
  5. Araque A, Parpura V, Sanzgiri R and Haydon P (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208–215 PubMedCrossRefGoogle Scholar
  6. Araque A, Li N, Doyle R and PG H (2000). Snare protein-dependent glutamate release from astrocytes. J Neurosci 20: 666–673 PubMedGoogle Scholar
  7. Attwell D, Barbour B and Szatkowski M (1993). Nonvesicular release of neurotransmitter. Neuron 11: 401–407 PubMedCrossRefGoogle Scholar
  8. Bergles D and Jahr C (1998). Glial contribution to glutamate uptake at schaffer collateral-commisural synapses in hippocampus. J Neurosci 18: 293–298 Google Scholar
  9. Bergles D, Diamond J and Jahr C (1999). Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9: 293–298 PubMedCrossRefGoogle Scholar
  10. Bezzi P, Gundersen V, Galbete J, Seifert G, Steinhnser C, Pilati E and Volterra A (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7: 613–620 PubMedCrossRefGoogle Scholar
  11. Bi G and Poo M (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength and postsynaptic cell type. J Neurosci 18: 10,464–10,472 Google Scholar
  12. Borghans J, Dupont G and Goldbeter A (1997). Complex intracellular calcium oscillations: A theoretical exploration of possible mechanisms. Biophys Chem 66: 25–41 PubMedCrossRefGoogle Scholar
  13. Charles A (1998). Intercellular calcium waves in glia. Glia 24: 39–49 PubMedCrossRefGoogle Scholar
  14. Chen X, Wang L, Zhou Y, Zheng L and Zhou Z (2005). Kiss-and-run glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25: 9236–9243 PubMedCrossRefGoogle Scholar
  15. Coles J and Orkand R (1983). Modification of potassium movement through the retina of the drone (apis-mellifera-male) by glial uptake. J Physiol (London) 340: 157–174 Google Scholar
  16. Cornellbell A, Finkbeiner S, Cooper M and Smith S (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473 CrossRefGoogle Scholar
  17. Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M and Carmignoto G (2006). Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol (London) 570: 567–582 CrossRefGoogle Scholar
  18. Danbolt N (2001). Glutamate uptake. Prog Neurobiol 65: 1–105 PubMedCrossRefGoogle Scholar
  19. Destexhe A, Mainen Z, Sejnowski T (1998) Kinetic models in synaptic transmission. In: Methods in neuronal modeling, 2nd edn. Cambridge University Press, Cambridge 1–25Google Scholar
  20. Fellin T and Haydon P (2005). Do astrocytes contribute to excitation underlying seizures. Trend Mol Med 11: 530–533 CrossRefGoogle Scholar
  21. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon P and Carmignoto G (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic nmda receptors. Neuron 43: 729–743 PubMedCrossRefGoogle Scholar
  22. Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G and Haydon P (2006). Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 26: 9312–9322 PubMedCrossRefGoogle Scholar
  23. Gersdorf Hv and Matthews G (1994). Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367: 735–739 CrossRefGoogle Scholar
  24. Goldbeter A, Dupont G and Berridge M (1990). Minimal model for signal-induced ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87: 1461–1465 PubMedCrossRefGoogle Scholar
  25. Halassa M, Fellin T, Takano H, Dong J and Haydon P (2007). Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27: 6473–6477 PubMedCrossRefGoogle Scholar
  26. Haydon P (2001). Glia:listening and talking to the synapse. Nat Rev Neurosci 2: 185–193 PubMedCrossRefGoogle Scholar
  27. Haydon P, Araque A (2002) Astrocytes as modulators of synaptic transmission. In: Volterra A, Magestretti PG, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission vol. 4, pp 185–189Google Scholar
  28. Heidelberger R, Heinemann C, Neher E and Matthews G (1994). Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371: 513–515 PubMedCrossRefGoogle Scholar
  29. Hertz L, Schousboe A, Boechler N, Mukerji S and Fedoroff S (1978). Kinetic characteristics of the glutamate uptake into normal astrocyte in cultures. Neurochem Res 3: 3–14 Google Scholar
  30. Holmes W (1995). Modeling the effect of glutamate diffusion and uptake on nmda and non-nmda receptor saturation. Biophys J 69: 1734–1747 PubMedGoogle Scholar
  31. Houart G, Dupont G and Goldbeter A (1999). Bursting, chaos and birythmicity originating from self-modulation of ip3 signal in a model for intracellular ca2+ oscillations. Bull Math Biol 61: 507–530 PubMedCrossRefGoogle Scholar
  32. Jourdain P, Bergersen L, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V and Volterra A (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10: 331–339 PubMedCrossRefGoogle Scholar
  33. Kang J, Jiang L, Goldman S and Nedergaard M (1998). Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1: 683–692 PubMedCrossRefGoogle Scholar
  34. Kang N, Xu J, Xu Q, Nedergaard M and Kang J (2005). Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal ca1 pyramidal neurons. J Neurophysiol 94: 4121–4130 PubMedCrossRefGoogle Scholar
  35. Keizer J and De Young G (1992). Two roles for ca2+ in agonist stimulated ca2+ oscillations. Biophys J 61: 649–660 PubMedGoogle Scholar
  36. Kleinle J, Vogt K, Luscher H, Muller L, Senn W, Wyler K and Streit J (1996). Transmitter concentration profiles in the synaptic cleft: An analytical model of release and diffusion. Biophys J 71: 2413–2426 PubMedCrossRefGoogle Scholar
  37. Kreft M, Stenovec M, Rupnik M, Grilc S, Kran M, Potokar M, Pangri T and Haydon PRZ (2004). Properties of ca2+-dependent exocytosis in cultured astrocytes. Glia 46: 437–445 PubMedCrossRefGoogle Scholar
  38. Lee C, Mannaioni G, Yuan H, Woo D, Gingrich M and Traynelis S (2007). Astrocytic control of synaptic nmda receptors. J Physiol (London) 581: 1057–1081 CrossRefGoogle Scholar
  39. Lehre K and Rusakov D (2002). Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys J 83: 125–134 PubMedGoogle Scholar
  40. Markram H, Helm P and Sakmann B (1995). Dendritic calcium transients evoked by single back-propagating action potentials in rat-neocortical pyramidal neurons. J Physiol (London) 485: 1–20 Google Scholar
  41. Markram H, Lubke J, Frotscher M and Sakmann B (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275: 213–215 PubMedCrossRefGoogle Scholar
  42. Meyer T and Stryer L (1988). Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85: 5051–5055 PubMedCrossRefGoogle Scholar
  43. Montana V, Ni Y, Sunjara V, Hua X and Parpura V (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24: 2633–2642 PubMedCrossRefGoogle Scholar
  44. Montana V, Malarkey E, Verderio C, Matteoli M and Parpura V (2006). Vesicular transmitter release from astrocytes. Glia 54: 700–715 PubMedCrossRefGoogle Scholar
  45. Muyderman H, Angehagen M, Sandberg M, Bjorklund U, Olsson T, Hansson E and Nilsson M (2001). alpha(1)-adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release in astrocytes. J Biol Chem 276: 46,504–46,514 CrossRefGoogle Scholar
  46. Nadkarni S and Jung P (2004). Dressed neurons: modeling neural-glial interactions. Phys Biol 1: 35–41 PubMedCrossRefGoogle Scholar
  47. Nadkarni S and Jung P (2005). Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Inegr Neurosci 4: 207–226 CrossRefGoogle Scholar
  48. Nadkarni S and Jung P (2007). Modeling synaptic transmission of the tripartite synapse. Phys Biol 4: 1–9 PubMedCrossRefGoogle Scholar
  49. Neher E (1998). Vesicle pools and ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389–399 PubMedCrossRefGoogle Scholar
  50. Nett W, Oloff S and McCarthy K (2002). Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 87: 528–537 PubMedGoogle Scholar
  51. Newman E (2005). Glia and synaptic transmission. In: Neuroglia, eds Kettenmann H and Ransom 10: 101–105 Google Scholar
  52. Newman E and Zahs K (1997). Calcium waves in retinal glial cells. Science 275: 844–847 PubMedCrossRefGoogle Scholar
  53. Oliet S, Piet R and Poulain D (2001). Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292: 923–926 PubMedCrossRefGoogle Scholar
  54. Parpura V and Haydon P (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97: 8629–8634 PubMedCrossRefGoogle Scholar
  55. Parpura V, Basarsky T, Liu F, Jeftinija K, Jeftinija S and Haydon P (1994). Glutamate-mediated astrocyte neuron signaling. Nature 369: 744–747 PubMedCrossRefGoogle Scholar
  56. Parri H, Gould T and Crunelli V (2001). Spontaneous astrocytic ca2+ oscillations in situ drive nmdar-mediated neuronal excitation. Nat Neurosci 4: 803–812 PubMedCrossRefGoogle Scholar
  57. Pinsky P and Rinzel J (1994). Intrinsic and network rhythmogenesis in a reduced traub model for ca3 neurons. J Comp Neurosci 1: 39–43 CrossRefGoogle Scholar
  58. Postnov D, Ryazanova L and Sosnovtseva O (2007). Functional modeling of neuralGÇôglial interaction. Biosystems 89: 84–91 PubMedCrossRefGoogle Scholar
  59. Retting J and Neher E (2002). Emerging roles of presynaptic proteins in ca2+ triggered exocytosis. Science 298: 781–785 CrossRefGoogle Scholar
  60. Robitaille R (1998). Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21: 847–855 PubMedCrossRefGoogle Scholar
  61. Rusakov D (2001). The role of perisynaptic glial sheaths in glutamate spillover and extracellular ca2+ depletion. Biophys J 81: 1947–1959 PubMedGoogle Scholar
  62. Rusakov D and Kullmann D (1998). Extrasynaptic glutamate diffusion in the hippocampus: Ultrastructural constraints, uptake and receptor activation. J Neurosci 18: 3158–3170 PubMedGoogle Scholar
  63. Rusakov D, Kullmann D and Stewart M (1999). Hippocampal synapses: do they talk to their neighbours?. Trends Neurosci 22: 382–388 PubMedCrossRefGoogle Scholar
  64. Schneggenburger R and Neher E (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406: 889–893 PubMedCrossRefGoogle Scholar
  65. Soellner C, Bennett M, Whiteheart S, Scheller R and Rothman J (1993). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 75: 409–418 CrossRefGoogle Scholar
  66. Suedhof T (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27: 509–547 CrossRefGoogle Scholar
  67. Suzuki Y, Moriyoshi E, Tsuchiya D and Jingami H (2004). Negative cooperativity of glutamate binding in the dimeric metabotropic glutamate receptor. J Biol Chem 279: 35,526–35,534 Google Scholar
  68. Tian G, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke H, Kang J and Nedergaard M (2005). An astrocytic basis of epilepsy. Nat Med 11: 973–981 PubMedGoogle Scholar
  69. Volman V, Ben-Jacob E and Levine H (2007). The astrocyte as a gatekeeper of synaptic information transfer. Neural Comp 19: 303–326 CrossRefGoogle Scholar
  70. Volterra A and Meldolesi J (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nat Rev Neurosci 6: 626–640 PubMedCrossRefGoogle Scholar
  71. Wang X (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79: 1549–1566 PubMedGoogle Scholar
  72. Wang X, Lou N, Xu Q, Tian G, Peng W, Han X, Kang J, Takano T and Nedergaard M (2006). Astrocytic ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9: 816–823 PubMedCrossRefGoogle Scholar
  73. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O and Haydon P (2004). Synaptotagmin iv regulates glial glutamate release. Proc Natl Acad Sci USA 101: 9441–9446 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Neuroscience and Biophysics 3 - Medicine, Research Center JuelichJuelichGermany
  2. 2.Virtual Institute of Neuromodulation, Research Center JuelichJuelichGermany
  3. 3.Institute of Neuromodulation, University of CologneCologneGermany
  4. 4.JuelichGermany

Personalised recommendations