Biological Cybernetics

, Volume 96, Issue 4, pp 377–388 | Cite as

The role of the striatum in adaptation learning: a computational model

  • Moritz Grosse-WentrupEmail author
  • Jose L. Contreras-Vidal
Original Paper


To investigate the functional role of the striatum in visuo-motor adaptation, we extend the DIRECT-model for visuo-motor reaching movements formulated by Bullock et al.(J Cogn Neurosci 5:408–435,1993) through two parallel loops, each modeling a distinct contribution of the cortico–cerebellar–thalamo–cortical and the cortico–striato–thalamo–cortical networks to visuo-motor adaptation. Based on evidence of Robertson and Miall(Neuroreport 10(5): 1029–1034, 1999), we implement the function of the cortico–cerebellar–thalamo–cortical loop as a module that gradually adapts to small changes in sensorimotor relationships. The cortico–striato–thalamo–cortical loop on the other hand is hypothesized to act as an adaptive search element, guessing new sensorimotor-transformations and reinforcing successful guesses while punishing unsuccessful ones. In a first step, we show that the model reproduces trajectories and error curves of healthy subjects in a two dimensional center-out reaching task with rotated screen cursor visual feedback. In a second step, we disable learning processes in the cortico–striato– thalamo–cortical loop to simulate subjects with Parkinson’s disease (PD), and show that this leads to error curves typical of subjects with PD. We conclude that the results support our hypothesis, i.e., that the role of the cortico–striato–thalamo–cortical loop in visuo-motor adaptation is that of an adaptive search element.


Visual Feedback Internal Model Error Correction Term Visuomotor Adaptation Visual Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220PubMedCrossRefGoogle Scholar
  2. Balslev D, Nielsen FA, Frutiger SA, Sidtis JJ, Christiansen TB, Svarer C, Strother SC, Rottenberg DA, Hansen LK, Paulson OB, Law I (2002) Cluster analysis of activity-time series in motor learning. Hum Brain Map 15(3):135–145CrossRefGoogle Scholar
  3. Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor adaptation in normal aging. Learn Memory 10(1):55–63CrossRefGoogle Scholar
  4. Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49–90PubMedCrossRefGoogle Scholar
  5. Bullock D, Grossberg S, Guenther FH (1993) A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. J Cogn Neurosci 5:408–435CrossRefGoogle Scholar
  6. Burnod Y, Baraduc A, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R (1999) Parieto-frontal coding of reaching: an integrated framework. Exp Brain Res 129:325–346PubMedCrossRefGoogle Scholar
  7. Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621PubMedCrossRefGoogle Scholar
  8. Contreras-Vidal JL, Buch ER (2003) Effects of Parkinson’s disease on visuo-motor adaptation. Exp Brain Res 150:25–32PubMedGoogle Scholar
  9. Contreras-Vidal JL, Kerick SE (2004) Independent component analysis of dynamic brain responses during visuomotor adaptation. Neuroimage 21(3):936–945PubMedCrossRefGoogle Scholar
  10. Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J Exp Psychol Hum Percept Perform 15:493–506PubMedCrossRefGoogle Scholar
  11. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739PubMedCrossRefGoogle Scholar
  12. Doyon J, Penhune V, Ungerleider LG(2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologica 41(3):252–262CrossRefGoogle Scholar
  13. Fahn S, Sulzer D (2004) Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1(1):139–154PubMedCrossRefGoogle Scholar
  14. Ghilardi MF, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D(2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145PubMedCrossRefGoogle Scholar
  15. Guigon E, Baraduc P (2002) A neural model of perceptual-motor alignment. J Cogn Neurosci 14:538–549PubMedCrossRefGoogle Scholar
  16. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M(2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195PubMedCrossRefGoogle Scholar
  17. Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC(2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126PubMedCrossRefGoogle Scholar
  18. Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516PubMedCrossRefGoogle Scholar
  19. Inoue K,Kawashima R, Sugiura M, Ogawa A, Schormann T, Zilles K, Fukuda F(2001) Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. Neuroimage 14:1469–1475PubMedCrossRefGoogle Scholar
  20. Kagerer FA, Contreras-Vidal Jl, Stelmach GE (1997) Adaptation to gradual as compared with sudden visuo-motor distortions. Exp Brain Res 115:557–561PubMedCrossRefGoogle Scholar
  21. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease, pathophysiologic and clinical implications. New England J Med 318(14):876–880CrossRefGoogle Scholar
  22. Koerding K, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247CrossRefGoogle Scholar
  23. Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933PubMedCrossRefGoogle Scholar
  24. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20(23):8916–8924PubMedGoogle Scholar
  25. Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, Fischman AJ, Alpert NM (1998) Robot-aided functional imaging: application to a motor learning study. Hum Brain Map 6:59–72CrossRefGoogle Scholar
  26. Krebs HI, Hogan N, Heing W, Adamovich SV, Poizner H (2001) Procedural motor learning in Parkinson’s disease. Exp Brain Res 141:425–437PubMedCrossRefGoogle Scholar
  27. Laforce Jr R, Doyon J (2002) Differential role for the striatum and cerebellum in response to novel movements using a motor learning paradigm. Neuropsychologia 40:512–517PubMedCrossRefGoogle Scholar
  28. Nakahara H,Doya K, Hiskosaka O (2001) Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences - a computational approach. J Cogn Neurosci 13(5):626–647PubMedCrossRefGoogle Scholar
  29. Pine ZM, Krakauer J, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361PubMedCrossRefGoogle Scholar
  30. Robertson EM, Miall RC (1999) Visuomotor adaptation during inactivation of the dentate nucleus. Neuroreport 10(5):1029–1034PubMedCrossRefGoogle Scholar
  31. Roby-Brami A, Burnod Y (1995) Learning a new visuomotor transformation: error correction and generalization. Cogni Brain Res 2:229–242CrossRefGoogle Scholar
  32. Rosenbaum DA,Engelbrecht SE, Bushe MM,Loukopoulos LD (1993) A model for reaching control. Acta Psychologica 82(1–3):237–250PubMedCrossRefGoogle Scholar
  33. Schultz W,Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  34. Seidler RD, Noll DC, Chintalapati P (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res (in press)Google Scholar
  35. Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825PubMedCrossRefGoogle Scholar
  36. Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821PubMedCrossRefGoogle Scholar
  37. Stoffers D, Berendse HW, Deijen JB, Wolters EC (2002) The of computer experience on visuo-motor control: implications for visuo-motor testing in Parkinson’s disease. Neuropsychologica 40(11):1779–1785CrossRefGoogle Scholar
  38. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (2002) Handwriting size adaptation under distorted visual feedback in Parkinson’s disease patients, elderly controls and young controls. J Neurol Neurosurg and Psychiat 72:315–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Moritz Grosse-Wentrup
    • 1
    Email author
  • Jose L. Contreras-Vidal
    • 2
  1. 1.Institute of Automatic Control EngineeringTechnische Universiät MünchenMünchenGermany
  2. 2.Department of Kinesiology and Graduate Programs in Bioengineering and Neuroscience and Cognitive ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations