Advertisement

Biological Cybernetics

, 95:519 | Cite as

Generation and reshaping of sequences in neural systems

  • Mikhail I. Rabinovich
  • Ramón Huerta
  • Pablo Varona
  • Valentin S. Afraimovich
Original Paper

Abstract

The generation of informational sequences and their reorganization or reshaping is one of the most intriguing subjects for both neuroscience and the theory of autonomous intelligent systems. In spite of the diversity of sequential activities of sensory, motor, and cognitive neural systems, they have many similarities from the dynamical point of view. In this review we discus the ideas, models, and mathematical image of sequence generation and reshaping on different levels of the neural hierarchy, i.e., the role of a sensory network dynamics in the generation of a motor program (hunting swimming of marine mollusk Clione), olfactory dynamical coding, and sequential learning and decision making. Analysis of these phenomena is based on the winnerless competition principle. The considered models can be a basis for the design of biologically inspired autonomous intelligent systems.

Keywords

Sequence Learning Antennal Lobe Heteroclinic Cycle Kenyon Cell Sequential Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology: review and prospect. Sociol Methods Res 29:3–33CrossRefGoogle Scholar
  2. Afraimovich V, Hsu S-B (2003) Lectures on Chaotic Dynamical Systems. AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Somerville, MAGoogle Scholar
  3. Afraimovich V, Zhigulin V, Rabinovich M (2004a) On the origin of reproducible sequential activity in neural circuits. Chaos 14:1123–1129CrossRefPubMedGoogle Scholar
  4. Afraimovich VS, Rabinovich MI, Varona P (2004b) Heteroclinic contours in neural ensembles and the winnerless competition principle. Int J Bifurcat Chaos 14:1195–1208CrossRefGoogle Scholar
  5. Anderson J (1995) An introduction to neural networks. MIT Press, Cambridge, MAGoogle Scholar
  6. Ashby WR (1960) Design for a Brain, 2nd edn. Wiley, New YorkGoogle Scholar
  7. Ashwin P, Borresen J (2005) Discrete computation using a perturbed heteroclinic network. Phys Lett A 347:208–214CrossRefGoogle Scholar
  8. Bapi R, Pammi VC, Miyapuram K, Ahmed (2005) Investigation of sequence processing: a cognitive and computational neuroscience perspective. Curr Sci 89:1690–1698Google Scholar
  9. Barto AG, Flagg AH, Sitkoff N (1999) A cerebellar model of timing and prediction in the control of reaching. Neural Comput 11:565–594CrossRefPubMedGoogle Scholar
  10. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H, Sejnowski T, Laurent G (2001) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:307–309CrossRefGoogle Scholar
  11. Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fmri. J Cogn Neurosci 16(1):127–138CrossRefPubMedGoogle Scholar
  12. Busse F, Heikes K (1980) Convenction in a rotating layer: a simple cased of turbulence. Science 208:173–175CrossRefPubMedGoogle Scholar
  13. Clark D, Fairburn C (eds) (1997) Science and Practice of Cognitive Behavioral Therapy. Oxford University Press, OxfordGoogle Scholar
  14. Collins D, Wyeth G (1999) Cerebellar control of a line following robot. In: Proceedings of the Australian conference on robotics and automation (ACRA -9) pp 74-9Google Scholar
  15. de Zeeuw CI, Simpson JI, Hoogenaraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400CrossRefPubMedGoogle Scholar
  16. Doboli S, Minai AA, Best P (2000) Latent attractors: a model for context-dependent place representations in the hippocampus. Neural Comput 12:1009–1043CrossRefPubMedGoogle Scholar
  17. Dominey PF (2005) From sensorimotor sequence to grammatical construction: evidence from simulation and neurophysiology. Adapt Behav 13(4):347–361CrossRefGoogle Scholar
  18. Doyon J, Song A, Karni A, Lalonde F, Adams M, Ungerleider L (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA 99:1017–1022CrossRefPubMedGoogle Scholar
  19. Fox M, Snyder A, Vincent J, Corbetta M, Essen DCV, Raichle M (2005) The human brain is intrinsically organized into, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedGoogle Scholar
  20. Friedrich R, Laurent G (2002) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894CrossRefGoogle Scholar
  21. Galan RF, Sachse S, Galizia CG, Herz AVM (2004) Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput 16:999–1012CrossRefGoogle Scholar
  22. Giambra L (1995) A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious Cogn 4:1–21CrossRefPubMedGoogle Scholar
  23. Gigerenzer G, Todd PM (2000) Simple Heuristics That Make Us Smart. Oxford University Press, OxfordGoogle Scholar
  24. Glickstein M (1993) Motor skills but not cognitive tasks. Trends Neurosci 16:450–451CrossRefPubMedGoogle Scholar
  25. Hazeltine E, Ivry R (2002) Can we teach the cerebellum new tricks?. Science 296:1979–1980CrossRefPubMedGoogle Scholar
  26. Hertz J, Palmer R, Krogh A (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood City, CAGoogle Scholar
  27. Hikosaka Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–471CrossRefGoogle Scholar
  28. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558CrossRefPubMedGoogle Scholar
  29. Huerta R, Rabinovich MI (2004) Reproducible sequence generation in random neural ensembles. Phys Rev Lett 93:238104CrossRefPubMedGoogle Scholar
  30. Ito M (1982) Cerebellar control of the vestibulo-ocular reflex-around the flocculus hypothesis. Annu Rev Neurosci 5:275–296CrossRefPubMedGoogle Scholar
  31. Jefferys J, Traub R, Whittington M (1996) Neuronal networks for induced “0 hz”rhythms. Trends Neurosci 19:202-208CrossRefPubMedGoogle Scholar
  32. Kistler WM, de Zeeuw CI (2002) Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput 14:2597-2626CrossRefPubMedGoogle Scholar
  33. Krupa M (1997) Robust heteroclinic cycles. J Nonlin Sci 7:129–176CrossRefGoogle Scholar
  34. Lashley K (1960) The problem of serial order in behavior. In: Beach FA, Hebb DO, Morgan CT, Nissen HW (eds) The Neuropsychology of Lashley. McGraw-Hill, New York, pp 506–521Google Scholar
  35. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297CrossRefPubMedGoogle Scholar
  36. Lawrence M, Trappenberg TP, Fine A (2005) A multi-modular associator network for simple temporal sequence learning and generation. In: Proceedings of ESANN-5, Bruges, Belgium, April 2005, pp 423-28Google Scholar
  37. Leibold C, Kempter R (2006) Memory capacity for sequences in a recurrent network with biological constrain. Neural Comput 18:904–941CrossRefPubMedGoogle Scholar
  38. Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2004) Dual sensory-motor function for a molluskan statocyst network. J Neurophysiol 91:336–345CrossRefPubMedGoogle Scholar
  39. Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2005) The role of sensory network dynamics in generating a motor program. J Neuroscience 25:9807–9815CrossRefGoogle Scholar
  40. Llinás R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3:958CrossRefPubMedGoogle Scholar
  41. Mazor O, Laurent G (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48:661–673CrossRefPubMedGoogle Scholar
  42. Mccoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior cingulate cortex. Nat Neurosci 8:1220–1227CrossRefPubMedGoogle Scholar
  43. Melamed O, Gerstner W, Maas W, Tsodyks M, Markram H (2004) Coding and learning of behavioral sequences. Trends Neurosci 27:11–14CrossRefPubMedGoogle Scholar
  44. Miguel MS, Toral R (2001) In: Tirapegui E, Martinez J, Tiemann R (eds) Instabilities and Nonequilibrium Structures VI. Kluwer, DordrechtGoogle Scholar
  45. Nusbaum MP, Beenhakken MP (2002) A small-system approach to motor pattern generation. Nature 417:343–350CrossRefPubMedGoogle Scholar
  46. Oscarsson O (1980) Functional organization of olivary projection to cerebellar anterior lobe. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven, New York, pp 279–289Google Scholar
  47. Panchin Y, Arshavsky Y, Deliagina T, Popova L, Orlovsky G (1995) Control of locomotion in marine mollusk clione limacina. IX. Neuronal mechanisms of spatial orientation. J Neurophysiol 73:1924–1937PubMedGoogle Scholar
  48. Poldrack A, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251CrossRefPubMedGoogle Scholar
  49. Rabinovich M, Ezersky A, Weidman P (2000) The dynamics of patterns. World Scientific, SingaporeGoogle Scholar
  50. Rabinovich M, Huerta R, Varona P (2006a) Heteroclinic synchronization: ultra-subharmonic locking. Phys Rev Lett 96:0141001CrossRefGoogle Scholar
  51. Rabinovich M, Varona P, Selverston A, Abarbanel H (2006b) Dynamical principles in neuroscience. Rev Modern Phys 78(4):1213CrossRefGoogle Scholar
  52. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys Rev Lett 8706:U149–U151Google Scholar
  53. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522CrossRefPubMedGoogle Scholar
  54. Rodriguez F, Huerta R (2004) Analysis of perfect mappings of the stimuli through neural temporal sequences. Neural Netw 17:963–973CrossRefPubMedGoogle Scholar
  55. Seliger P, Tsimring LS, Rabinovich MI (2003) Dynamics-based sequential memory: Winnerless competition of patterns. Phys Rev E 67:011905CrossRefGoogle Scholar
  56. Selverston A, Rabinovich M, Abarbanel H, Elson R, Szncs A, Pinto R, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to unterstanding central pattern generators. J Physiol (Paris) 94:357–374CrossRefGoogle Scholar
  57. Shiv B, Loewenstein G, Bechara A, Damasio H, Damasio A (2005) Investment behavior and the negative side of emotion. Psychol Sci 16:435–439PubMedGoogle Scholar
  58. Stone E, Holmes P (1990) Random perturbations of heteroclinic attractors. SIAM J Appl Math 50:726–743CrossRefGoogle Scholar
  59. Sun R, Giles CL (2001) Sequence learning: from recognition and prediction to sequential decision making. IEEE Intell Syst 16:67–70CrossRefGoogle Scholar
  60. Tanji J (2001) Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 24(1):631–651CrossRefPubMedGoogle Scholar
  61. Teasdale J, Dritschel B, Taylor M, Proctor L, Lloyd C, Nimmo-Smith I, Baddeley A (1995) Stimulus-independent thought depends on central executive resources. Mem Cognit 23(5):551–559PubMedGoogle Scholar
  62. van der Smagt P (2000) Benchmarking cerebellar control. Robot Auton Syst 32:237–251CrossRefGoogle Scholar
  63. Varona P, Aguirre C, Torres JJ, Rabinovich MI, Abarbanel HDI (2002a) Spatiotemporal patterns of network activity in the inferior olive. Neurocomputing 44-6:685–690CrossRefGoogle Scholar
  64. Varona P, Rabinovich MI, Selverston AI, Arshavsky YI (2002b) Winnerless competition between sensory neurons generates chaos: a possible mechanism for molluscan hunting behavior. Chaos 12:672–677CrossRefGoogle Scholar
  65. Venaille A, Varona P, Rabinovich MI (2005) Synchronization and coordination of sequences in two neural ensembles. Phys Rev E 71:061909CrossRefGoogle Scholar
  66. Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:8–9CrossRefGoogle Scholar
  67. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21(9):370–375CrossRefPubMedGoogle Scholar
  68. Wang L (2000) Heteroassociations of spatio temporal sequences with the bidirectional associative memory. IEEE Trans Neural Netw 11:1503–1505CrossRefPubMedGoogle Scholar
  69. Waugh F, Marcus C, Westervelt R (1990) Fixed-point attractors in analog neural computation. Phys Rev Lett 64:1986–1989CrossRefPubMedGoogle Scholar
  70. Willingham DB, Salidis J, Gabrieli JD (2002) Direct comparison of neural systems mediating conscious and unconscious skill learning. J Neurophysiol 88:2451–1460Google Scholar
  71. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80CrossRefPubMedGoogle Scholar
  72. Wilson R, Turner G, Laurent G (2004) Transformation of olfactory representations in the drosophila antennal lobe. Science 303:366–370CrossRefPubMedGoogle Scholar
  73. Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17(2):245–319CrossRefPubMedGoogle Scholar
  74. Yamauchi BM, Beer RD (1994) Sequential behavior and learning in evolved dynamical neural networks. Adapt Behav 2(3): 219–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mikhail I. Rabinovich
    • 1
  • Ramón Huerta
    • 1
    • 2
  • Pablo Varona
    • 2
  • Valentin S. Afraimovich
    • 1
    • 3
  1. 1.UCSDInstitute for Nonlinear ScienceLa JollaUSA
  2. 2.Grupo de Neurocomputación Biológica (GNB), Dpto. de Ingeniería Informática, Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Investigación en Comunicación ÓpticaUASLPSan Luis PotosíMéxico

Personalised recommendations