Biological Cybernetics

, Volume 95, Issue 4, pp 289–310 | Cite as

Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena

  • Fadi N. KaramehEmail author
  • Munther A. Dahleh
  • Emery N. Brown
  • Steve G. Massaquoi
Original Paper


The Electroencephalogram (EEG) is an important clinical and research tool in neurophysiology. With the advent of recording techniques, new evidence is emerging on the neuronal populations and wiring in the neocortex. A main challenge is to relate the EEG generation mechanisms to the underlying circuitry of the neocortex. In this paper, we look at the principal intrinsic properties of neocortical cells in layer 5 and their network behavior in simplified simulation models to explain the emergence of several important EEG phenomena such as the alpha rhythms, slow-wave sleep oscillations, and a form of cortical seizure. The models also predict the ability of layer 5 cells to produce a resonance-like neuronal recruitment known as the augmenting response. While previous models point to deeper brain structures, such as the thalamus, as the origin of many EEG rhythms (spindles), the current model suggests that the cortical circuitry itself has intrinsic oscillatory dynamics which could account for a wide variety of EEG phenomena.


Pyramidal Cell Alpha Rhythm Cereb Cortex Cortical Column Supplementary Material Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2006_90_MOESM1_ESM.pdf (171 kb)
Supplementary material


  1. Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68:1345–1358PubMedGoogle Scholar
  2. Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248PubMedCrossRefGoogle Scholar
  3. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998a) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444–6465Google Scholar
  4. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998b) Cellular and network models for intrathalamic augmenting responses during 10 Hz stimulation. J Neurophysiol 79:2739–2748Google Scholar
  5. Burger T, Larkum ME, Luscher H-R (2001) High I h channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85:855–868Google Scholar
  6. Burger T , Senn W, Luscher, H (2003) Hyperpolarization-activated current I h disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90(4):2428–2437CrossRefGoogle Scholar
  7. Brumberg J, Pinto D, Simons D (1999) Cortical columnar processing in the rat whisker-to-barrel system. J Neurophysiol 82:1808–1817PubMedGoogle Scholar
  8. Bush P (1995) Compartmental models of single neurons and small networks in the primary visual cortex of the cat. PhD dissertation, University of California, San DiegoGoogle Scholar
  9. Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21:47–74PubMedCrossRefGoogle Scholar
  10. Castros-alamancos MA, Connors B (1996a) Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 16:7742–7756Google Scholar
  11. Castro-Alamancos MA, Connors B (1996b) Spatiotemporal properties of short term plasticity in sensorimotor thalamocortical pathways of the rat. J Neurosci 16:2767–2779PubMedGoogle Scholar
  12. Castro-Alamancos MA (2000) Origin of synchronized oscillations induced by neocortical disinhibition in vivo. J Neurosci 20:9195–9206PubMedGoogle Scholar
  13. Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390:297–310PubMedCrossRefGoogle Scholar
  14. Chen W, Zhang JJ, Hu GY, Wu CP (1996) Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Neuroscience 73:39–55PubMedCrossRefGoogle Scholar
  15. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196PubMedGoogle Scholar
  16. Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular and Network Mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725PubMedCrossRefGoogle Scholar
  17. Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070PubMedGoogle Scholar
  18. Destexhe A, Mainen Z, Sejnowksi TJ (1998) in Koch C, Segev I (ed) Methods in neuronal modeling, pp 1–25. MIT, CambridgeGoogle Scholar
  19. Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608PubMedGoogle Scholar
  20. Destexhe A (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38:555–563CrossRefGoogle Scholar
  21. Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750PubMedGoogle Scholar
  22. Feldmeyer D, Sakmann B (2000) Synaptic efficacy and reliability of excitatory connections between the principal neurons of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol 525:31–39PubMedCrossRefGoogle Scholar
  23. Fellman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1– 47Google Scholar
  24. Galarreta M, Hestrin S (2000) Burst firing induces a rebound of synaptic strength at unitary neocortical synapses. J Neurophysiol 83:621–624PubMedGoogle Scholar
  25. Gernier F, Timofeev I, Steriade M (1998) Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proc Natl Acad Sci USA 95:13929–13934CrossRefGoogle Scholar
  26. Ghazanfar A, Nicolelis M (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cereb Cortex 9:348–361PubMedCrossRefGoogle Scholar
  27. Goldberg JH, Lacefield CO, Yuste R (2004) Global dendritic spikes in mouse layer 5 low threshold spiking interneurons: implications for control of pyramidal cell bursting. J Physiol 558.2:465–478PubMedCrossRefGoogle Scholar
  28. Hefti B, Smith P (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA-a blockade. J Neurophysiol 83:2626–2638PubMedGoogle Scholar
  29. Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action 1173, 1992. potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J (70):1069– 1081PubMedCrossRefGoogle Scholar
  30. Huguenard JR, Mccormick DA (1992) Simulation of the currents in volved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383PubMedGoogle Scholar
  31. Jones SR, Pinto DJ, Kaper TJ, Kopell N (2000) Alpha-frequency rhythms desynchronize over long cortical distances: a modeling study. J Comput Neurosci 9:271–291PubMedCrossRefGoogle Scholar
  32. Kaneko T, Cho R, Li Y, Nomura S, Mizunp N (2000) Predominant information transfer from layer III pyramidal neurons to corticospinal neurons. J Comp Neurol 423:52–65PubMedCrossRefGoogle Scholar
  33. Karameh F. N. (2002) A model for cerebral cortical neuronal group electric activity and its implications for cerebral function. PhD dissertation (MIT, 2002), CambridgeGoogle Scholar
  34. Katzenelson RD (1982) Deterministic and stochastic field theoretic models in the neurophysics of EEG. PhD dissertation, UCSDGoogle Scholar
  35. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486PubMedCrossRefGoogle Scholar
  36. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195PubMedCrossRefGoogle Scholar
  37. Larkum ME, Zhu JJ, Sakmann B (1999a) A new cellular mechanism for coupling inputs arriving at different cortical layer. Nature (Lond) 398:338–341CrossRefGoogle Scholar
  38. Larkum ME, Kaiser KMM , Sakmann B (1999b) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604PubMedCrossRefGoogle Scholar
  39. Larkum ME, Senn W, Luscher H-R (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex. DOI: 10.1093/cercor/bhh065Google Scholar
  40. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural mechanisms to networks. Electroencephalogr Clin Neurophysiol 79:81–93CrossRefGoogle Scholar
  41. Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cereb Cortex 7:523–533PubMedCrossRefGoogle Scholar
  42. Massimini M, Amzica F (2001) Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol 85:1346–1350PubMedGoogle Scholar
  43. McCormick D, Huguenard J (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400PubMedGoogle Scholar
  44. Mima T, Oluwatimlehin T, Hiroaka T, Hallet M (2001) Transient interhemispheric neuronal synchrony correlates with object recognition. J Neurosci 21:3942–3948PubMedGoogle Scholar
  45. Mormann F, Elger CE, Lehnertz K (2006) Seizure anticipation: from algorithms to clinical practice. Curr Opin Neurol 19(2):187–193PubMedCrossRefGoogle Scholar
  46. Mouncastle VB (1998) Perceptual neuroscience, the cerebral cortex. Harvard University press, CambridgeGoogle Scholar
  47. Nunez A, Amzica F, Steriade M (1993) Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. J Neurophysiol 70:418–429PubMedGoogle Scholar
  48. Nunez P (1981) Electric fields of the brain. Oxford University Press, OxfordGoogle Scholar
  49. Nunez P (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, OxfordGoogle Scholar
  50. Princivalle AP, Pangalos MN, Bowery NG, Spreafico R (2000) Distribution of GABA(B) receptor protein in somatosensory cortex and thalamus of adult rats and during postnatal development. Brain Res Bull 52:397–405PubMedCrossRefGoogle Scholar
  51. Raizada RD, Grossberg S (2003) Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb Cortex 13(1):100–113PubMedCrossRefGoogle Scholar
  52. Rhodes P, Gray CM (1994) Simulations of intrinsically bursting neocortical pyramidal neurons. Neural Comput 6:1086–1110Google Scholar
  53. Rhodes P, Llinas R (2001) Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. J Physiol 536:167–187PubMedCrossRefGoogle Scholar
  54. Sanchez-Vives M, McCormick D (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034PubMedCrossRefGoogle Scholar
  55. Schubert D, Staiger JF, Cho N, Kotter R, Zilles K, Luhmann HJ (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21:3580–3592PubMedGoogle Scholar
  56. Schwindt P, Crill W (1999) Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J Neurophysiol 81:1341–1354PubMedGoogle Scholar
  57. Sinton CM, McCarley RW (2000) Neuroanatomical and neurophysiological aspects of sleep: basic science and clinical relevance. Semin Clin Neuropsychatry 5(1):6–19Google Scholar
  58. Spain W, Schwindt P, Crill W (1991) Post-inhibitory excitation and inhibition in layer V pyramidal neurons from cat sensorimotor cortex. J Physiol 434:609–626PubMedGoogle Scholar
  59. Steriade M, Amzica F, Neckelmann D, Timofeev I (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J Neurophysiol 80:1456–1479PubMedGoogle Scholar
  60. Steriade M, Timoofeev I, Gernier F, Durmuller N (1998b) Role of thalamic and cortical neurons in augmenting responses and self sustained activity: dual intracellular recordings in vivo. J Neurosci 18:6425–6443Google Scholar
  61. Steriade M, Timofeev I, Gernier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985PubMedGoogle Scholar
  62. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162PubMedCrossRefGoogle Scholar
  63. Tamas G, Buhl E, Lorinz A, Somogyi P (2000) Proximally targeted GABAeric synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371PubMedCrossRefGoogle Scholar
  64. Thomson A, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7:510–522PubMedCrossRefGoogle Scholar
  65. Thomson A, Bannister A (1998) Postsynaptic pyramidal target selection by descending layer III pyramidal axons. Neuroscience 84:669–683PubMedCrossRefGoogle Scholar
  66. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199PubMedCrossRefGoogle Scholar
  67. Tung A (2005) New anesthesia techniques. Thorac Surg Clin 15(1):27–38PubMedCrossRefGoogle Scholar
  68. Van Brederode J, Spain W (1995) Differences in inhibitory synaptic input between layer II–III and layer V neurons of the cat neocortex. J Neurophysiol 74:1149–1166PubMedGoogle Scholar
  69. Wang Z, McCormick D (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by Norepinephrine, acetylcholine and 1S,3R-ACPD. J Neurosci 13:2199–2216PubMedGoogle Scholar
  70. Wang X-J (1999) Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 89(2):347–362PubMedCrossRefGoogle Scholar
  71. Williams S, Stuart G (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol 521:467–482PubMedCrossRefGoogle Scholar
  72. Wilson H (1999) Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200:375–388PubMedCrossRefGoogle Scholar
  73. Wright JJ, Lilet DT (1995) Simulation of electrocortical waves. Biol Cybern 72:347–356PubMedGoogle Scholar
  74. Wu J-Y, Guan L, Yuang T (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19:5005–5015PubMedGoogle Scholar
  75. Xiang Z, Huhuenard J, Prince D (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fadi N. Karameh
    • 1
    Email author
  • Munther A. Dahleh
    • 2
  • Emery N. Brown
    • 3
    • 4
  • Steve G. Massaquoi
    • 2
    • 5
  1. 1.Department of Electrical and Computer EngineeringAmerican University of BeirutBeirutLebanon
  2. 2.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Brain and Cognitive Sciences, MIT-Harvard Division of Health Science and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical CareMassachusetts General HospitalBostonUSA
  5. 5.MIT-Harvard Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations