Biological Cybernetics

, Volume 95, Issue 3, pp 213–231 | Cite as

Self-organisation and communication in groups of simulated and physical robots

Original Paper

Abstract

In social insects, both self-organisation and communication play a crucial role for the accomplishment of many tasks at a collective level. Communication is performed with different modalities, which can be roughly classified into three classes: indirect (stigmergic) communication, direct interactions and direct communication. The use of stigmergic communication is predominant in social insects (e.g. the pheromone trails in ants), where, however, direct interactions (e.g. antennation in ants) and direct communication (e.g. the waggle dance in honey bees) can also be observed. Taking inspiration from insect societies, we present an experimental study of self-organising behaviours for a group of robots, which exploit communication to coordinate their activities. In particular, the robots are placed in an arena presenting holes and open borders, which they should avoid while moving coordinately. Artificial evolution is responsible for the synthesis in a simulated environment of the robot’s neural controllers, which are subsequently tested on physical robots. We study different communication strategies among the robots: no direct communication, handcrafted signalling and a completely evolved approach. We show that the latter is the most efficient, suggesting that artificial evolution can produce behaviours that are more adaptive than those obtained with conventional design methodologies. Moreover, we show that the evolved controllers produce a self-organising system that is robust enough to be tested on physical robots, notwithstanding the huge gap between simulation and reality.

Keywords

Swarm robotics Evolutionary robotics Self-organisation Swarm intelligence Swarm-bot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

422_2006_80_MOESM1_ESM.wmv (4 mb)
Supplementary material
422_2006_80_MOESM2_ESM.wmv (4 mb)
Supplementary material
422_2006_80_MOESM3_ESM.wmv (4 mb)
Supplementary material
422_2006_80_MOESM4_ESM.wmv (1.9 mb)
Supplementary material
422_2006_80_MOESM5_ESM.wmv (2 mb)
Supplementary material
422_2006_80_MOESM6_ESM.wmv (2 mb)
Supplementary material
422_2006_80_MOESM7_ESM.wmv (3.2 mb)
Supplementary material

References

  1. Balch T, Arkin RC (1994) Communication in reactive multiagent robotic systems. Auton Robots 1(1):27–52CrossRefGoogle Scholar
  2. Baldassarre G, Parisi D, Nolfi S (2004) Coordination and behaviour integration in cooperating simulated robots. In: Schaal S, Ijspeert A, Billard A, Vijayakumar S, Hallam J, Meyer J.-A (eds) From animals to animats VIII. Proceedings of the 8th international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 385–394Google Scholar
  3. Baldassarre G, Parisi D, Nolfi S (2006) Distributed coordination of simulated robots based on self-organisation. Artif Life pp 2558–2564Google Scholar
  4. Beckers R, Holland OE, Deneubourg J-L (1994) From local actions to global tasks: stigmergy and collective robotics. In: Brooks RA, Maes P (eds) Proceedings of the 4th international workshop on the synthesis and simulation of living systems (artificial life IV). MIT Press, Cambridge, pp 181–189Google Scholar
  5. Beni G, Wang J (1989) Swarm intelligence. In: Proceedings of the seventh annual meeting of the Robotics Society of Japan, RSJ Press, Tokio, pp 425–428Google Scholar
  6. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New YorkGoogle Scholar
  7. Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  8. Cao YU, Fukunaga AS, Kahng AB (1997) Cooperative mobile robotics: antecedents and directions. Auton Robots 4:1–23Google Scholar
  9. Correll N, Martinoli A (2006) Collective inspection of regular structures using a swarm of miniature robots. In: Ang MH Jr, Khatib O (eds) Experimental Robotics IX. Proceedings of the ninth international symposium on experimental robotics (ISER-04) vol 21 Springer tracts in advanced robotics. Springer, Berlin Heidelberg New York, pp 375–385Google Scholar
  10. Di Paolo EA (2000) Behavioral coordination, structural congruence and entrainment in a simulation of acoustically coupled agents. Adapt Behav 8(1):25–46Google Scholar
  11. Dorigo M, şahin E (2004) Swarm robotics – special issue editorial. Auton Robots 17(2–3):111–113CrossRefGoogle Scholar
  12. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press/Bradford Books, CambridgeGoogle Scholar
  13. Dorigo M, Trianni V, şahin E, Groß R, Labella TH, Baldassarre G, Nolfi S, Deneubourg J-L, Mondada F, Floreano D, Gambardella LM (2004) Evolving self-organizing behaviors for a swarm-bot. Auton Robots 17(2–3):223–245CrossRefGoogle Scholar
  14. Dudek G, Jenkin M, Milios E (2002) A taxonomy of multirobot systems. In: Balch T, Parker LE (eds), Robot teams: from diversity to polymorphism. AK Peters, WellesleyGoogle Scholar
  15. Fuchs S (1976) The response to vibrations of the substrate and reactions of specific drumming in colonies of carpenter ants (Camponotus, Formicidae, Hymenoptera). Beha Ecol and Sociobiol 1(2):155–184CrossRefGoogle Scholar
  16. Goss S, Aron S, Deneubourg J-L, Pasteels JM (1989) Self-organized shortcuts in the argentine ant. Naturwissenchaften 76:579–581CrossRefGoogle Scholar
  17. Grassé PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6: 41–81CrossRefGoogle Scholar
  18. Groß R, Tuci E, Bonani M, Mondada F, Dorigo M (2006) Object transport by modular robots that self-assemble. In: Proceedings of the 2006 IEEE international conference on robotics and automation (ICRA’06). IEEE Computer Society Press, Los Alamitos, pp 2558–2564Google Scholar
  19. Harvey I, Husbands P, Cliff D (1992) Issues in evolutionary robotics. In: Meyer J-A, Roitblat H, Wilson S (eds) Proceedings of the 2nd international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 364–373Google Scholar
  20. Harvey I, DiPaolo EA, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: a new scientific tool for studying cognition. Artif Life 11(1–2):79–98PubMedCrossRefGoogle Scholar
  21. Hayes AT, Martinoli A, Goodman RM (2000) Comparing distributed exploration strategies with simulated and real autonomous robots. In: Parker LE, Bekey G, Bahren J (eds) Proceedings of the fifth international symposium on distributed autonomous robotic systems (DARS-00). Springer, Berlin Heidelberg New York, pp 261–270Google Scholar
  22. Holland O, Melhuish C (1999) Stigmergy, self-organization, and sorting in collective robotics. Artif Life 5(2):173–202PubMedCrossRefGoogle Scholar
  23. Hölldobler B, Wilson EO (1990) The ants. Belknap Press Harvard University Press, CambridgeGoogle Scholar
  24. Ijspeert AJ, Martinoli A, Billard A, Gambardella LM (2001) Collaboration through the exploitation of local interactions in autonomous collective robotics: the stick pulling experiment. Auton Robots 11 (2):149–171CrossRefGoogle Scholar
  25. Kamimura A, Kurokawa H, Yoshida E, Murata S, Tomita K, Kokaji S (2005) Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans on Mechatron 10 (3):314–325CrossRefGoogle Scholar
  26. Kube CR, Bonabeau E (2000) Cooperative transport by ants and robots. Robot Auton Syst 30(1–2):85–101CrossRefGoogle Scholar
  27. Kube CR, Zhang H (1997) Task modelling in collective robotics. Auton Robots 4:53–72CrossRefGoogle Scholar
  28. Matarić MJ (1998) Using communication to reduce locality in distributed multiagent learning. J Exp Theor Arti Intell Spe Issue Learn DAI Syst 10 (3):357–369CrossRefGoogle Scholar
  29. Mondada F, Pettinaro GC, Guignard A, Kwee IV, Floreano D, Deneubourg JL, Nolfi S, Gambardella LM, Dorigo M (2004) SWARM-BOT: a new distributed robotic concept. Auton Robots 17(2–3):193–221CrossRefGoogle Scholar
  30. Montgomery DC (1997) Design and analysis of experiments, Wiley New York, 5th edn.Google Scholar
  31. Nolfi S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT Press/Bradford Books, CambridgeGoogle Scholar
  32. Quinn M (2001) Evolving communication without dedicated communication channels. In: Kelemen J, Sosik P (eds) Advances in artificial life: sixth european conference on artificial life (ECAL2001). Springer, Berlin Heidelberg New York, pp 357–366Google Scholar
  33. Quinn M, Smith L, Mayley G, Husbands P (2003) Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361:2321–2344CrossRefGoogle Scholar
  34. Rybski P, Larson A, Veeraraghavan H, LaPoint M, Gini M (2004) Communication strategies in multi-robot search and retrieval: experiences with MinDART. In: Alami R (ed) Proceedings of the seventh international symposium on distributed autonomous robotic systems (DARS-04), Toulouse, France, 23–25 June 2004 pp 301–310Google Scholar
  35. Seeley T (1995) The wisdom of the hive. Harvard University Press, CambridgeGoogle Scholar
  36. Trianni V, Labella TH, Dorigo M (2004) Evolution of direct communication for a swarm-bot performing hole avoidance. In: Dorigo M, Birattari M, Blum C, Gambardella LM, Mondada F, Stützle T (eds) Ant colony optimization and swarm intelligence–proceedings of ANTS 2004– fourth international workshop vol 3172 Lecture notes in computer science. Springer, Berlin Heidelberg New York, pp 131–142Google Scholar
  37. Trianni V, Tuci E, Dorigo M (2004b) Evolving functional self-assembling in a swarm of autonomous robots. In: Schaal S, Ijspeert A, Billard A, Vijayakamur S, Hallam J, Meyer J-A (eds) From animals to animats 8. Proceedings of the eighth international conference on simulation of adaptive behavior (SAB04). MIT Press, Cambridge, pp 405–414Google Scholar
  38. Trianni V, Nolfi S, Dorigo M (2006) Cooperative hole avoidance in a swarm-bot. Robot Auton Syst 54(2):97–103CrossRefGoogle Scholar
  39. Werner GM, Dyer MG (1991) Evolution of communication in artificial organisms. In: Langton C, Taylor C, Farmer D, Rasmussen S (eds) Artificial life II. vol X SFI Studies in the science of complexity. Addison-Wesley, Redwood City, pp 659–687Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.IRIDIA CP 194/6Université Libre de BruxellesBrusselsBelgium

Personalised recommendations