Biological Cybernetics

, Volume 93, Issue 2, pp 91–108 | Cite as

Waves, bumps, and patterns in neural field theories

  • S. CoombesEmail author


Neural field models of firing rate activity have had a major impact in helping to develop an understanding of the dynamics seen in brain slice preparations. These models typically take the form of integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of waves, bumps and patterns, based around natural extensions of those used for local differential equation models. In this paper we present a review of such techniques and show how recent advances have opened the way for future studies of neural fields in both one and two dimensions that can incorporate realistic forms of axo-dendritic interactions and the slow intrinsic currents that underlie bursting behaviour in single neurons.


Bumps Waves Neural field theories Integral equations Evans functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amari, S 1975Homogeneous nets of neuron-like elementsBiol Cybern17211220PubMedGoogle Scholar
  2. Amari, S 1977Dynamics of pattern formation in lateral-inhibition type neural fieldsBiol Cybern277787CrossRefPubMedGoogle Scholar
  3. Amari S (1972) Characteristics of random nets of analog neuron-like elements. IEEE Trans Syst Man Cyb SMC-2:643–657.Google Scholar
  4. Beurle, RL 1956Properties of a mass of cells capable of regenerating pulsesPhilos Trans R Soc Lond B2405594Google Scholar
  5. Ben-Yishai, R, Bar-Or, L, Sompolinsky, H 1995Theory of orientation tuning in visual cortexProc Nat Acad Sci USA9238443848PubMedGoogle Scholar
  6. Blomquist P, Wyller J, Einevoll GT (2005) Localized activity patterns in two-population neuronal networks. Physica D (to appear) Vol 206, Pages 180–212Google Scholar
  7. Bressloff, PC, Cowan, JD, Golubitsky, M, Thomas, PJ, Wiener, M 2001Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortexPhilos Trans R Soc B40299330Google Scholar
  8. Bressloff PC (2004) Les houches lectures in neurophysics, chapter Pattern formation in visual cortex, Springer Verlag (to appear)Google Scholar
  9. Bressloff, PC 2003Spatially periodic modulation of cortical patterns by long-range horizontal connectionsPhysica D185131157Google Scholar
  10. Bressloff, PC, Folias, SE 2004Front-bifurcations in an excitatory neural networkSIAM J Appl Math65131151CrossRefGoogle Scholar
  11. Bressloff, PC 1996New mechanism for neural pattern formationPhys Rev Lett7646444647Google Scholar
  12. Bressloff, PC, Coombes, S 1997Physics of the extended neuronInt J Mod Phys B1123432392CrossRefGoogle Scholar
  13. Bressloff, PC, Coombes, S 2000Dynamics of strongly-coupled spiking neuronsNeural Comput1291129CrossRefPubMedGoogle Scholar
  14. Bressloff, PC 2001Traveling fronts and wave propagation failure in an inhomogeneous neural networkPhysica D15583100Google Scholar
  15. Camperi, M, Wang, XJ 1998A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistabilityJ Comput Neurosci5383405CrossRefPubMedGoogle Scholar
  16. Chervin, RD, Pierce, PA, Connors, BW 1988Periodicity and directionality in the propagation of epileptiform discharges across neortexJ Neurophysiol6016951713PubMedGoogle Scholar
  17. Chen, X 1997Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equationsAdv Diff Eqs2125160Google Scholar
  18. Chen, Z, Ermentrout, GB, McLeod, JB 1997Traveling fronts for a class of nonlocal convolution differential equationAppl Anal64235253Google Scholar
  19. Chen, F 2003Travelling waves for a neural networkElectron J Diff Eq200314Google Scholar
  20. Chu, PH, Milton, JD, Cowan, JD 1994Connectivity and the dynamics of integrate-and-fire networksInt J Bifurcat Chaos4237243CrossRefGoogle Scholar
  21. Cowan, JD 2004History of concepts and techniquesIntell Syst3375400Google Scholar
  22. Connors, BW, Amitai, Y 1993Generation of epileptiform discharges by local circuits in neocortexSchwartzkroin, PA eds. Epilepsy: models, mechanisms and conceptsCambridge University PressLondon388424Google Scholar
  23. Colby, CL, Duhamel, JR, Goldberg, ME 1995Oculocentric spatial representation in parietal cortexCereb Cortex5470481PubMedGoogle Scholar
  24. Coombes, S, Lord, GJ, Owen, MR 2003Waves and bumps in neuronal networks with axo-dendritic synaptic interactionsPhysica D178219241Google Scholar
  25. Cremers, D, Herz, AVM 2002Traveling waves of excitation in neural field models: equivalence of rate descriptions and integrate-and-fire dynamicsNeural Comput1416511667CrossRefPubMedGoogle Scholar
  26. Coombes, D, Owen, MR 2004Evans functions for integral neural field equations with Heaviside firing rate functionSIAM J Appl Dyn Syst34574600CrossRefMathSciNetGoogle Scholar
  27. Coombes S, Owen MR (2005) Bumps, breathers, and waves in a neural network with spike frequency adaptation. Phys Rev Lett (to appear) Vol 94, 148102Google Scholar
  28. Curtu, R, Ermentrout, B 2004Pattern formation in a network of excitatory and inhibitory cells with adaptationSIAM J Appl Dyn Syst3191231CrossRefMathSciNetGoogle Scholar
  29. Coombes, S 2003Dynamics of synaptically coupled integrate-and-fire-or-burst neuronsPhys Rev E67041910Google Scholar
  30. Coombes S, Owen MR (2005) Bumps, rings, and spots in a two-dimensional neural field (in preparation)Google Scholar
  31. Diekmann, O 1978Thresholds and travelling waves for the geographical spread of infectionJ Math Biol6109130PubMedGoogle Scholar
  32. Diekmann, O, Kaper, HG 1978On the bounded solutions of a nonlinear convolution equationNonlinear Anal2721737CrossRefGoogle Scholar
  33. Doedel EJ, Champneys AR, Fairgrieve TR, Kuznetsov YA, Sandstede B, Wang XJ (1997) AUTO97 continuation and bifurcation software for ordinary differential equations. Available from Scholar
  34. Ermentrout, GB, Cowan, JD 1979A mathematical theory of visual hallucination patternsBiol Cybern34137150CrossRefPubMedGoogle Scholar
  35. Ermentrout, GB, McLeod, JB 1993Existence and uniqueness of travelling waves for a neural networkProc R Soc Edin123A461478Google Scholar
  36. Ermentrout, GB, Kleinfeld, D 2001Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational roleNeuron293344CrossRefPubMedGoogle Scholar
  37. Ermentrout, GB 1998Neural nets as spatio-temporal pattern forming systemsRep Prog Phys61353430CrossRefGoogle Scholar
  38. Enculescu, M 2004A note on traveling fronts and pulses in a firing rate model of a neuronal networkPhysica D196362386Google Scholar
  39. Evans, J 1975Nerve axon equations: IV The stable and unstable impulseIndiana U Math J2411691190CrossRefGoogle Scholar
  40. Fall CP, Lewis T, Rinzel J (2005) Background activity dependent properties of a network model for working memory that incorporates cellular bistability. Biol Cybern (to appear) Vol 93, Pages 109–118Google Scholar
  41. Folias E, Bressloff PC (2005) Stimulus-locked waves and breathers in an excitatory neural network. bresslof/publications/05-2abs.html.Google Scholar
  42. Folias, SE, Bressloff, PC 2004Breathing pulses in an excitatory neural networkSIAM J Appl Dyn Syst3378407CrossRefGoogle Scholar
  43. Geise, MA 1999Neural field theory for motion perceptionKluwer Academic PublishersDordrechtGoogle Scholar
  44. Griffith, JS 1963A field theory of neural nets: I: Derivation of field equationsBull Math Biophys25111120PubMedGoogle Scholar
  45. Griffith, JS 1965A field theory of neural nets: II: Properties of field equationsBull Math Biophys27187195PubMedGoogle Scholar
  46. Golomb, D, Amitai, Y 1997Propagating neuronal discharges in neocortical slices: Computational and experimental studyJ Neurophysiol7811991211PubMedGoogle Scholar
  47. Goldman-Rakic, PS 1995Cellular basis of working memoryNeuron14477485CrossRefPubMedGoogle Scholar
  48. Guo Y, Chow CC (2005) Existence and stability of standing pulses in neural networks: I. Existence. SIAM J Appl Dyn Syst (to appear).Google Scholar
  49. Gutkin, BS, Laing, CR, Chow, CC, Ermentrout, GB, Colby, CL 2001Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activityJ Comput Neurosci11121134CrossRefPubMedGoogle Scholar
  50. Guo Y, Chow CC (2005) Existence and stability of standing pulses in neural networks: II. Stability. SIAM J Appl Dyn Syst (to appear).Google Scholar
  51. Golomb, D, Ermentrout, GB 2000Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivityNetwork11221246PubMedGoogle Scholar
  52. Huang, X, Troy, WC, Yang, Q, Ma, H, Laing, CR, Schiff, SJ, Wu, J 2004Spiral waves in disinhibited mammalian neocortexJ Neurosci2498979902CrossRefPubMedGoogle Scholar
  53. Hutt, A 2004Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delayPhys Rev E70052902CrossRefGoogle Scholar
  54. Hutt, A, Bestehorn, M, Wennekers, T 2003Pattern formation in intracortical neuronal fieldsNetwork14351368PubMedGoogle Scholar
  55. Idiart, MAP, Abbott, LF 1993Propagation of excitation in neural network modelsNetwork4285294Google Scholar
  56. Jirsa, VK, Kelso, JAS 2000Spatiotemporal pattern formation in neural systems with heterogeneous connection topologiesPhys Rev E6284628465Google Scholar
  57. Jirsa, VK, Haken, H 1996Field theory of electromagnetic brain activityPhys Rev Lett77960963Google Scholar
  58. Jirsa, VK, Haken, H 1997A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamicsPhysica D99503526Google Scholar
  59. Kapitula, T, Kutz, N, Sandstede, B 2004The Evans function for nonlocal equationsIndiana U Math J5310951126CrossRefGoogle Scholar
  60. Kelso, JAS, Bressler, SL, Buchanan, S, Deguzman, GC, Ding, M, Fuchs, A, Holroyd, T 1992A phase-transition in human brain and behaviourPhys Lett A169134144CrossRefGoogle Scholar
  61. Kishimoto, K, Amari, S 1979Existence and stability of local excitations in homogeneous neural fieldsJ Math Biol7303318CrossRefPubMedGoogle Scholar
  62. Kim, U, Bal, T, McCormick, DA 1995Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitroJ Neurophysiol7413011323PubMedGoogle Scholar
  63. Krisner, EP 2004The link between integral equations and higher order ODEsJ Math Anal Appl291165179CrossRefGoogle Scholar
  64. Laing, CR, Troy, WC, Gutkin, B, Ermentrout, GB 2002Multiple bumps in a neuronal model of working memorySIAM J Appl Math636297CrossRefGoogle Scholar
  65. Laing, CR, Troy, WC 2003Two bump solutions of Amari-type models of working memoryPhysica D178190218Google Scholar
  66. Laing, CR, Troy, WC 2003PDE methods for nonlocal modelsSIAM J Appl Dyn Syst2487516CrossRefGoogle Scholar
  67. Laing, C, Chow, CC 2001Stationary bumps in networks of spiking neuronsNeural Comput1314731494CrossRefPubMedGoogle Scholar
  68. Liley, DTJ, Cadusch, PJ, Dafilis, MP 2002A spatially continuous mean field theory of electrocortical activityNetwork1367113PubMedGoogle Scholar
  69. Laing CR (2005) Spiral waves in nonlocal equations. SIAM J Appl Dyn Syst (to appear) Vol 4, Pages 588–606Google Scholar
  70. Miles, R, Traub, RD, Wong, RKS 1995Spread of synchronous firing in longitudinal slices from the CA3 region of HippocampusJ Neurophysiol6014811496Google Scholar
  71. Pl, Nunez 1995Neocortical dynamics and human EEG rhythmsOxford University PressNY, USAGoogle Scholar
  72. Pinto, DJ, Ermentrout, GB 2001Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulsesSIAM J Appl Math62206225CrossRefGoogle Scholar
  73. Price, CB 1997Traveling Turing patterns in nonlinear neural fieldsPhys Rev E5566986706Google Scholar
  74. Pinto DJ, Jackson RK, Wayne CE (2005) Existence and stability of traveling pulses in a continuous neuronal network. SIAM J Appl Dyn Syst (to appear).Google Scholar
  75. Pinto, DJ, Ermentrout, GB 2001Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulsesSIAM J Appl Math62226243CrossRefGoogle Scholar
  76. Richardson, KA, Schiff, SJ, Gluckman, BJ 2005Control of traveling waves in the mammalian cortexPhys Rev Lett94028103Google Scholar
  77. Rubin, J 2004A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal mediumDiscrete Contin Dyn Syst A4925940Google Scholar
  78. Rubin, J, Troy, W 2004Sustained spatial patterns of activity in neuronal populations without recurrent excitationSIAM J Appl Math6416091635CrossRefGoogle Scholar
  79. Robinson, PA, Rennie, CJ, Wright, JJ, Bahramali, H, Gordon, E, Rowe, Dl 2001Prediction of electroencephalographic spectra from neurophysiologyPhys Rev E63021903Google Scholar
  80. Rinzel, J, Terman, D, Wang, XJ, Ermentrout, B 1998Propagating activity patterns in large-scale inhibitory neuronal networksScience27913511355CrossRefPubMedGoogle Scholar
  81. Steriade, M, Jones, EG, Línas, RR 1990Thalamic oscillations and signallingWileyNew YorkGoogle Scholar
  82. Steyn-Ross, ML, Steyn-Ross, DA, Sleigh, JW, Whiting, DR 2003Theoretical predictions for spatial covariance of the electroencephalographic signal during the anesthetic-induced phase transition: Increased correlation length and emergence of spatial self-organizationPhys Rev E68021902CrossRefGoogle Scholar
  83. Smith, GD, Cox, CL, Sherman, SM, Rinzel, J 2000Fourier analysis of sinusoidally driven Thalamocortical relay neurons and a minimal integrate-and-fire-or-burst modelJ Neurophysiol83588610PubMedGoogle Scholar
  84. Tass, P 1995Cortical pattern formation during visual hallucinationsJ Biol Phys21177210CrossRefGoogle Scholar
  85. Taylor, JG 1999Neural ‘bubble’ dynamics in two dimensions: foundationsBiol Cybern80393409CrossRefGoogle Scholar
  86. Traub, RD, Jefferys, JG, Miles, R 1993Analysis of the propagation of disinhibition induced after-discharges along the guineau-pig hippocampal slice in vitroJ Physiol472267287PubMedGoogle Scholar
  87. Terman, DH, Ermentrout, GB, Yew, AC 2001Propagating activity patterns in thalamic neuronal networksSIAM J Appl Math6115781604CrossRefGoogle Scholar
  88. Watson, GN 1952A treatise on the theory of Bessel functionsCambridge University PressLondonGoogle Scholar
  89. Werner, H, Richter, T 2001Circular stationary solutions in two-dimensional neural fieldsBiol Cybern85211217CrossRefPubMedGoogle Scholar
  90. Wu, JY, Guan, L, Tsau, Y 1999Propagating activation during oscillations and evoked responses in neocortical slicesJ Neurosci1950055015PubMedGoogle Scholar
  91. Wright, JJ, Kydd, RR 1992The electroencephalogram and cortical neural networksNetwork3341362MathSciNetGoogle Scholar
  92. Wilson, HR, Cowan, JD 1972Excitatory and inhibitory interactions in localized populations of model neuronsBiophys J12124PubMedGoogle Scholar
  93. Wilson, HR, Cowan, JD 1973A mathematical theory of the functional dynamics of cortical and thalamic nervous tissueKybernetik135580CrossRefPubMedGoogle Scholar
  94. Zhang, K 1996Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theoryJ Neurosci1621122126PubMedGoogle Scholar
  95. Zhang, L 2003On stability of traveling wave solutions in synaptically coupled neuronal networksDiff Integ Eqs16513536Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations