Biological Cybernetics

, Volume 92, Issue 6, pp 452–460 | Cite as

Pattern computation in neural communication systems

  • Peter Andras


Biological data suggests that activity patterns emerging in small- and large-scale neural systems may play an important role in performing the functions of the neural system, and in particular, neural computations. It is proposed in this paper that neural systems can be understood in terms of pattern computation and abstract communication systems theory. It is shown that analysing high-resolution surface EEG data, it is possible to determine abstract probabilistic rules that describe how emerging activity patterns follow earlier activity patterns. The results indicate the applicability of the proposed approach for understanding the working of complex neural systems.


Communication System System Theory Activity Pattern Biological Data Neural System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andras, P 2001aThe role of brain chaosWermter, SAustin, JWillshaw, D eds. Emerging neural architectures based on neuroscienceSpringerBerlin Heidelberg New York296310Google Scholar
  2. Andras P (2001b) The Sierpinski brain. In: Proceedings of the international joint conference on neural networks. pp 654–659Google Scholar
  3. Andras, P 2002Computation with chaotic patternsNeurocomputing44263268CrossRefGoogle Scholar
  4. Andras P (2003a) Understanding neural computation in terms of pattern languages. In: Proceedings of the international joint conference on neural networks, pp 1385–1390Google Scholar
  5. Andras, P 2003bA model for emergent complex order in small neural networksJ Integr Neurosci25570CrossRefGoogle Scholar
  6. Andras, P 2004Pattern languages: a new paradigm for neurocomputationNeurocomputing58223228CrossRefGoogle Scholar
  7. Andras P (2005) Neural activity pattern systems. Neurocomputing (in press).Google Scholar
  8. Destexhe, A, Marder, E 2004Plasticity in single neuron and circuit computationsNature431789795CrossRefPubMedGoogle Scholar
  9. Engel, AK, Singer, W 2001Temporal binding and the neural correlates of sensory awarenessTrends Cogn Sci51625CrossRefPubMedGoogle Scholar
  10. Freeman, WJ 1994Role of chaotic dynamics in neural plasticityProg Brain Res102319333PubMedGoogle Scholar
  11. Galán, RF, Sachse, S, Galizia, CG, Herz, AVM 2004Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classificationNeural Comput169991012CrossRefPubMedGoogle Scholar
  12. Gelperin, A 1999Oscillatory dynamics and information processing in olfactory systemsJ Exp Biol20218551864PubMedGoogle Scholar
  13. Georgopoulos, AP, Schwartz, AB, Kettber, RE 1986Neuronal population coding of movement directionScience23314161419PubMedGoogle Scholar
  14. Grossberg, S 2001Linking laminar circuits of visual cortex to visual perception: development, grouping and attentionNeurosci Biobehav Rev25513526CrossRefPubMedGoogle Scholar
  15. Harris-Warrick, RMMarder, ESelverston, AIMoulins, M eds. 1992Dynamic biological networks. The stomatogastric nervous systemMITCambridgeGoogle Scholar
  16. Haykin S (1994) Neural networks. A comprehensive foundation. Englewood Cliffs, Macmillan PublishersGoogle Scholar
  17. Kay, LM, Lancaster, LR, Freeman, WJ 1996Reafference and attractors in the olfactory system during odor recognitionInt J Neural Syst7489495CrossRefPubMedGoogle Scholar
  18. Kenet, T, Bibitchkov, D, Tsodyks, M, Grinvald, A, Arieli, A 2003Spontaneously emerging cortical representations of visual attributesNature425954956CrossRefPubMedGoogle Scholar
  19. Koshiba, T, Mäkinen, E, Takada, Y 1997Learning deterministic even linear languages from positive examplesTheoretical Comput Sci1856379CrossRefGoogle Scholar
  20. Li, Z 1998A neural model of contour integration in the primary visual cortexNeural Comput10903940CrossRefPubMedGoogle Scholar
  21. Markram, H, Toledor-Rodriguez, M, Wang, Y, Gupta, A, Silberberg, G, Wu, CZ 2004Interneurons of the neocortical inhibitory systemNat Rev Neurosci5793807CrossRefPubMedGoogle Scholar
  22. Nusbaum, MP, Beenhakker, MP 2002A small-systems approach to motor pattern generationNature417343350CrossRefPubMedGoogle Scholar
  23. Ohl, FW, Scheich, H, Freeman, WJ 2001Change in pattern of ongoing cortical activity with auditory category learningNature412733736CrossRefPubMedGoogle Scholar
  24. Rabinovich, MI, Abarbanel, HDI 1998The role of chaos in neural systemsNeuroscience87514CrossRefPubMedGoogle Scholar
  25. Sakakibara, Y 1997Recent advances of grammatical inferenceTheor Comput Sci1851545CrossRefGoogle Scholar
  26. Silberberg, G, Gupta, A, Markram, H 2002Stereotypy in neocortical microcircuitsTrends Neurosci25227230CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Computing ScienceUniversity of NewcastleNewcastle upon TyneUK

Personalised recommendations