Advertisement

Biological Cybernetics

, Volume 92, Issue 6, pp 367–379 | Cite as

Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions

  • Robert KozmaEmail author
  • Marko Puljic
  • Paul Balister
  • Bela Bollobás
  • Walter J. Freeman
Article

Abstract

We model the dynamical behavior of the neuropil, the densely interconnected neural tissue in the cortex, using neuropercolation approach. Neuropercolation generalizes phase transitions modeled by percolation theory of random graphs, motivated by properties of neurons and neural populations. The generalization includes (1) a noisy component in the percolation rule, (2) a novel depression function in addition to the usual arousal function, (3) non-local interactions among nodes arranged on a multi-dimensional lattice. This paper investigates the role of non-local (axonal) connections in generating and modulating phase transitions of collective activity in the neuropil. We derived a relationship between critical values of the noise level and non-locality parameter to control the onset of phase transitions. Finally, we propose a potential interpretation of ontogenetic development of the neuropil maintaining a dynamical state at the edge of criticality.

Keywords

Depression Phase Transition Noise Level Collective Activity Dynamical State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aihara, K, Takabe, T, Toyoda, M 1990Chaotic neural networksPhys Lett A144333340CrossRefGoogle Scholar
  2. Aizeman, M, Lebowitz, JL 1988Metastability effects in bootstrap percolationJ Phys A2138013813Google Scholar
  3. Albert, R, Barabási, AL 2002Statistical mechanics of complex networksRev Modern Phys7447CrossRefGoogle Scholar
  4. Arhem P, Blomberg C, Liljenstrom H (2000) Disorder versus order in brain function. In: Progr neural processing, Vol. 12, ISBN 981-02- 4008-2,World Scientific, SingaporeGoogle Scholar
  5. Bak, P 1996How nature works - the science of self-organized criticalitySpringerBerlin Heidelberg, New YorkGoogle Scholar
  6. Bak, P, Tang, C, Wiesenfeld, K 1987Phys Rev Lett59381CrossRefPubMedGoogle Scholar
  7. Balister PN, Bollobás B, Stacey AM (1993) Upper bounds for the critical probability of oriented percolation in two dimensions. In: Proc Royal Soc Lond Ser A 440(1908):201–220Google Scholar
  8. Balister P, Bollobás B, Kozma R (2004) Mean field models of probabilistic cellular automata. Random Struct Algorithms (on press)Google Scholar
  9. Balister P, Bollobás B, Johnson R, Walters M (2003) Random majority percolation. (submitted)Google Scholar
  10. Barabási, L, Bonabeau, E 2003Scale-free networksSci Am2886069Google Scholar
  11. Barrie, JM, Freeman, WJ, Lenhart, M 1996Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbitsJ Neurophysiol76520539Google Scholar
  12. Berlekamp, ER, Conway, JH, Guy, RK 1982Winning ways for your mathematical plays vol 1: games in generalAcademicNew YorkGoogle Scholar
  13. Binder, K 1981Finite scale scaling analysis of Ising model block distribution functionZ Phys B43119140CrossRefGoogle Scholar
  14. Bollobás, B 1985Random GraphsAcademicLondonGoogle Scholar
  15. Bollobás, B, Riordan, O 2003Results on scale-free random graphs. Handbook of graphs and networks 1–34Wiley-VCHWeinheimGoogle Scholar
  16. Bressler, SL, Kelso, JAS 2001Cortical coordination dynamics and cognitionTrends Cogn Sci52636CrossRefPubMedGoogle Scholar
  17. Bressler, SL 2002Understanding cognition through large-scale cortical networksCurr Directions Psychol Sci115861CrossRefGoogle Scholar
  18. Bressler, SL 2003Cortical coordination dynamics and the disorganization syndrome in schizophreniaNeuropsychopharmacology28S35S39Google Scholar
  19. Cerf, R, Cirillo, EN 1999Finite size scaling in three-dimensional bootstrap percolationAnn Probab2718371850Google Scholar
  20. Cipra, BA 1987An introduction to the ising modelAm Math Monthly94937959Google Scholar
  21. Crutchfield, JP 1994The calculi of emergence: computation, dynamics, and inductionPhysica D751154Google Scholar
  22. Dafilis, MP, Liley, DTJ, Cadusch, PJ 2001Robust chaos in a model of the electro-encephalogram: Implications for brain dynamicsChaos11474478CrossRefPubMedGoogle Scholar
  23. Duarte, AMS 1989Simulation of a cellular automaton with an oriented bootstrap rulePhysica A15710751079Google Scholar
  24. Erdős, P, Rényi, A 1960On the evolution of random graphsPubl Math Inst Hung Acad Sci51761Google Scholar
  25. Freeman, WJ 1975Mass action in the nervous systemAcademicNew YorkGoogle Scholar
  26. Freeman, WJ 1999Noise-induced first-order phase transitions in chaotic brain activityInt J Bifurcation Chaos922152218CrossRefGoogle Scholar
  27. Freeman, WJ 2003aThe wave packet: an action potential for the 21st CenturyJ Integrative Neurosci2330Google Scholar
  28. Freeman, WJ 2003bEvidence from human scalp EEG of global chaotic itinerancyChaos1310671077CrossRefGoogle Scholar
  29. Freeman, WJ 2003cA neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamicsInt J Bifurc Chaos1324932511CrossRefMathSciNetGoogle Scholar
  30. Freeman, WJ, Burke, BC, Holmes, MD 2003aAperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta ratesHum Brain Mapp19248272CrossRefGoogle Scholar
  31. Freeman, WJ, Burke, BC, Holmes, MD, Vanhatalo, S 2003bSpatial spectra of scalp EEG and EMG from awake humansClin Neurophysiol11410551060CrossRefGoogle Scholar
  32. Freeman, WJ 2004Origin, structure, and role of background EEG activity. Part 1. Analytic amplitudeClin Neurophysiol11520772088CrossRefPubMedGoogle Scholar
  33. Friston, KJ 2000The labile brain I. Neuronal transients and nonlinear couplingPhil Trans R Soc Lond B355215236CrossRefGoogle Scholar
  34. Gruber, AJ, Solla, SA, Surmeier, DJ, Houk, JC 2003Modulation of striatal single units by expected reward: A spiny neuron model displaying dopamine-induced bistabilityJ Neurophysiol9010951114PubMedGoogle Scholar
  35. Haken, H 1999What can synergetics contribute to the understanding of brain functioning?Uhl, C eds. Analysis of neurophysiological brain functioningSpringerBerlin Heidelberg, New York740Google Scholar
  36. Gács, P 1990A Toom rule that increases the thickness of setsJ Statist Phys59171193CrossRefGoogle Scholar
  37. Gravener, J, McDonald, E 1997Bootstrap percolation in a polluted environmentJ Statist Phys87915927Google Scholar
  38. Grimmett, G 1999Percolation in fundamental principles of mathematical sciencesSpringerBerlin Heidelberg, New York xiv+444Google Scholar
  39. Hopfield, JJ 1982Neural networks and physical systems with emergent collective computational abilitiesProc Nat Acad Sci USA7925542558PubMedGoogle Scholar
  40. Hoppensteadt, FC, Izhikevich, EM 1998Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles?BioSystems488594CrossRefPubMedGoogle Scholar
  41. Ingber, L 1995Statistical mechanics of multiple scales of neocortical interactionsNunez, PL eds. Neocortical dynamics and human EEG rhythmsOxfordNew York628681Google Scholar
  42. Jensen, HJ 1998Self-organized criticality – emergent behavior in physical and biological systemsCambridge University PressCambridgeGoogle Scholar
  43. Kaneko, K 1990Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elementsPhysica D41137172Google Scholar
  44. Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond. A constructive approach with applications in life sciences.Google Scholar
  45. Kauffman, SA 1990Requirements for evolvability in complex systems: orderly dynamics and frozen componentsPhysica D42135152Google Scholar
  46. Korn, H, Faure, P 2003Is there chaos in the brain? II. Experimental evidence and related modelsComptes Rendus Biologies326787840CrossRefPubMedGoogle Scholar
  47. Kozma, R 1998Intermediate-range coupling generates low-dimensional attractors deeply in the chaotic region of one-dimensional latticesPhys Lett A2448591CrossRefGoogle Scholar
  48. Kozma, R, Freeman, WJ 2001Chaotic resonance – methods and applications for robust classification of noisy and variable patternsInt J Bifurcation Chaos1116071629CrossRefGoogle Scholar
  49. Kozma R, Balister P, Bollobás B, Freeman WJ (2001) Dynamical percolation models of phase transitions in the cortex In: Proceedings NOLTA 01 nonlinear theory and applications symposium, Miyagi, Japan, vol. 1, pp 55–59Google Scholar
  50. Kozma R, Balister P, Bollobás B, Chen H, Freeman WJ (2003) Analysis of scaling laws in a local random cellular automata model (submitted)Google Scholar
  51. Kozma, R, Puljic, M, Balister, P, Bollobás, B, Freeman, WJ 2004Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. Lecture Notes Computer Science LNCS vol 3350SpringerBerlin Heidelberg, New York435443Google Scholar
  52. Linkenkaer-Hansen, K, Nikouline, VM, Palva, JM, Iimoniemi, RJ 2001Long-range temporal correlations and scaling behavior in human brain oscillationsJ Neurosci1513701377Google Scholar
  53. Maes, C, Vande, Velde K 1997Relative energies for non-Gibbsian statesComm Math Phys189277286CrossRefGoogle Scholar
  54. Makowiec, D 1999Stationary states for Toom cellular automata in simulationsPhys Rev E553795Google Scholar
  55. Marcq, P, Chaté, H, Manneville, P 1997Universality in Ising-like phase transitions of lattices of coupled chaotic mapsPhys Rev E5526062627CrossRefGoogle Scholar
  56. Newman, MEJ 2000Models of the small worldJ Stat Phys101819841CrossRefGoogle Scholar
  57. Ohl, FW, Scheich, H, Freeman, WJ 2001Change in pattern of ongoing cortical activity with auditory category learningNature412733736CrossRefPubMedGoogle Scholar
  58. Ohl, FW, Deliano, M, Scheich, H, Freeman, WJ 2003Early and late patterns of stimulus-related activity in auditory cortex of trained animalsBiol Cybern88374379CrossRefPubMedGoogle Scholar
  59. Peters, A, Palay, SL, deF, H 1991Webster fine structure of the nervous system: neurons and their supporting cellsOxford University PressOxfordGoogle Scholar
  60. Pomeau, Y 1993Periodic behavior in cellular automataJ Stat Phys7013791382CrossRefGoogle Scholar
  61. Puljic M, Kozma R, (2003) Phase transitions in a probabilistic cellular neural network model having local and remote connections. IEEE/INNS International Joint Conference Neural Network IJCNN’2003, pp 831–835Google Scholar
  62. Puljic M, Kozma R (2005) Activation clustering in neural and social networks. Complexity (in press)Google Scholar
  63. Schiff, SJ,  et al. 1994Controlling chaos in the brainNature370615620Google Scholar
  64. Skarda, CA, Freeman, WJ 1987How brains make chaos in order to make sense of the worldBehav Brain Sci10161195Google Scholar
  65. Stam, CJ, Breakspear, M, Cappellen, van Walsum A-M, Dijk, BW 2003Nonlinear synchronization in EEG and whole-head recordings of healthy subjectsHum Brain Mapp196378CrossRefPubMedGoogle Scholar
  66. Stauffer, D, Aharony, A 1994Introduction to percolation theorySelwood Printing LtdWest SussexGoogle Scholar
  67. Toom, AL, Vasilyev, NB, Stavskaya, ON, Mityushin, LG, Kurdyumov, GL, Prigorov, SA 1990Discrete local Markov systems in Stochastic cellular systems:ergodicity, memory, morphogenesisDobrushin, RLKryukov, VIToom, AL eds. Nonlinear Science: theory and applicationsManchester University PressUKGoogle Scholar
  68. Wang, XF, Chen, GR 2003Complex networks: small-world, scale-free and beyondIEEE Trans Circuits Syst31620Google Scholar
  69. Watts, DJ, Strogatz, SH 1998Collective dynamics of small-world networksNature393440442CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Robert Kozma
    • 1
    Email author
  • Marko Puljic
    • 1
  • Paul Balister
    • 1
  • Bela Bollobás
    • 1
  • Walter J. Freeman
    • 2
  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA
  2. 2.Division of NeurobiologyUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations