Biological Cybernetics

, Volume 94, Issue 2, pp 157–167 | Cite as

Similarity of interspike interval distributions and information gain in a stationary neuronal firing

Original Paper

Abstract

The Kullback–Leibler (KL) information distance is proposed for judging similarity between two different interspike interval (ISI) distributions. The method is applied by a comparison of four common ISI descriptors with an exponential model which is characterized by the highest entropy. Under the condition of equal mean ISI values, the KL distance corresponds to information gain coming from the state described by the exponential distribution to the state described by the chosen ISI model. It has been shown that information can be transmitted changing neither the spike rate nor coefficient of variation (CV). Furthermore the KL distance offer an indication of the exponentiality of the chosen ISI descriptor (or data): the distance is zero if, and only if, the ISIs are distributed exponentially. Finally an application on experimental data coming from the olfactory sensory neurons of rats is shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  2. Adrian ED (1928) The basis of sensation. W. W. Norton, New YorkGoogle Scholar
  3. Beirlant J, Dudewicz EJ, Gyorfi L, van der Meulen EC (1997) Nonparametric entropy estimation: an overview. Int J Math Stat Sci 6:17–39Google Scholar
  4. Berger D, Pribram K, Wild H, Bridges C (1990) An analysis of neural spike train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency. Exp Brain Res 80:129–134PubMedCrossRefGoogle Scholar
  5. Berger D, Pribram K (1992) The relationship between the gabor elementary function and a stochastic model of interspike interval distribution in the responses of visual cortex neurons. Biol Cybern 67:191–194PubMedCrossRefGoogle Scholar
  6. Bershadskii A, Dremencov E, Fukayama D, Yadid G (2001) Probabilistic properties of neuron spiking time series obtained in vivo. Eur Phys J B 24:409–413CrossRefGoogle Scholar
  7. Berry II MJ, Meister M (1998) Refractoriness and neural precision. J Neurosci 6:2200–2211Google Scholar
  8. Bhumbra GS, Inyushkin AN, Dyball REJ (2004) Assessment of spike activity in the supraoptic nucleus. J Neuroendocrin 16:390–397CrossRefGoogle Scholar
  9. Borst A, Theunissen FE (1999) Information theory and neural coding. Nature Neurosci 2:947–957PubMedCrossRefGoogle Scholar
  10. Buracas GT, Albright TD (1999) Gauging sensory representations in the brain. Trends Neurosci 22:303–309PubMedCrossRefGoogle Scholar
  11. Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21:5328–5343PubMedGoogle Scholar
  12. Chhikhara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology and applications. Marcel Dekker, New YorkGoogle Scholar
  13. Choi B, Kim K, Song SH (2004) Goodness-of-fit test for exponentiality based on Kullback-Leibler information. Commun Stat-Simul C 33(2):525–536CrossRefGoogle Scholar
  14. Christodoulou C, Bugmann G (2001) Coefficient of variation vs. mean interspike interval curves: what do they tell us about the brain? Neurocomputing 38–40:1141–1149CrossRefGoogle Scholar
  15. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New YorkGoogle Scholar
  16. Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley, New YorkGoogle Scholar
  17. DeWeese MR, Meister M (1999) How to measure the information gained from one symbol. Network: Comput Neural Syst 10:325–340CrossRefGoogle Scholar
  18. Duchamp-Viret P, Duchamp A, Chaput MA (2003) Single olfactory sensory neurons simultaneously integrate the components of an odor mixture. Eur J Neurosci 10:2690–2696CrossRefGoogle Scholar
  19. Duchamp-Viret P, Chaput MA, Kostal L, Lansky P, Rospars J-P (2005) Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J Neurobiol 65:97–114PubMedCrossRefGoogle Scholar
  20. Ebrahimi N, Habibullah M, Soofi ES (1992) Testing exponentiality based on Kullback-Leibler Information. J Stat Soc B 3:739–748Google Scholar
  21. Gerstein G, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68PubMedGoogle Scholar
  22. Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, CambridgeGoogle Scholar
  23. Gibbons JD (1971) Nonparametric Statistical Inference. McGraw-Hill, New YorkGoogle Scholar
  24. Han YMY, Chan YS, Lo KS, Wong TM (1998) Spontaneous activity and barosensitivity of the barosensitive neurons in the rostral ventrolateral medulla of hypertensive rats induced by transection of aortic depressor nerves. Brain Res 813:262–267PubMedCrossRefGoogle Scholar
  25. Hentall ID (2000) Interactions between brainstem and trigeminal neurons detected by cross-spectral analysis. Neuroscience 96:601–610PubMedCrossRefGoogle Scholar
  26. Holt GR, Softky WR, Koch C, Douglas RJ, (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806–1814PubMedGoogle Scholar
  27. Iynegar S, Liaom Q (1997) Modeling neural activity using the generalized inverse Gaussian distribution. Biol Cybern 77:289–295CrossRefGoogle Scholar
  28. Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern 3:227–241Google Scholar
  29. Johnson DH, Glantz RM (2004) When does interval coding occur?. Neurocomputing 58–60:13–18CrossRefGoogle Scholar
  30. Kozachenko LF, Leonenko NN (1987) On statistical estimation of entropy of a random vector. Probl Inf Transm 23:95–101Google Scholar
  31. Lansky P, Rodriguez R, Sacerdote L (2004) Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput 16:477-489PubMedCrossRefGoogle Scholar
  32. Levine MW (1991) The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol Cybern 65:459–467PubMedCrossRefGoogle Scholar
  33. Lewis CD, Gebber GL, Larsen PD, Barman SM (2001) Long-term correlations in the spike trains of medullary sympathetic neurons. J Neurophysiol 85:1614–1622PubMedGoogle Scholar
  34. Ling YB, He B (1993) Entropic analysis of biological growth models. IEEE Trans Bio-Med Eng 40:48–54Google Scholar
  35. van der Lubbe JCA (1997) Information theory. Cambridge University Press, CambridgeGoogle Scholar
  36. Mandl G (1992) Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus. Vision Res 33:1451–1475CrossRefGoogle Scholar
  37. McKeegan DEF (2002) Spontaneous and odor evoked activity in single avian olfactory bulb neurons. Brain Res 929:48–58PubMedCrossRefGoogle Scholar
  38. Miller EG, Fisher III JW (2003) ICA using space estimates of entropy. J Mach Learn Res 4:1271–1295CrossRefGoogle Scholar
  39. Nemenman I, Bialek W, de Ruyter van Steveninck RR (2004) Entropy and information in spike trains: progress on the sampling problem. Phys Rev E 69:056111-1–056111-6CrossRefGoogle Scholar
  40. Paninski L (2003) Estimation of entropy and mutual information. Neural Comput 15:1191–1253CrossRefGoogle Scholar
  41. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. Biophys J 4:391–418Google Scholar
  42. Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. MIT Press, CambridgeGoogle Scholar
  43. Reeke NR, Coop AD (2004) Estimating the temporal entropy of neuronal discharge. Neural Comput 16:941–970PubMedCrossRefGoogle Scholar
  44. Rospars J-P, Lansky P, Vaillant J, Duchamp-Viret P, Duchamp A (1994) Spontaneous activity of first- and second-order neurons in the frog olfactory system. Brain Res 662:31–44PubMedCrossRefGoogle Scholar
  45. Rozell CJ, Johnson DH, Glantz RM (2004) Measuring information transfer in the spike generator of crayfish sustaining fibers. Biol Cybern 90:89–97PubMedCrossRefGoogle Scholar
  46. Ruskin DN, Bergstrom D A, Walters JR (2002) Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. J Neurophysiol 88:487–496PubMedGoogle Scholar
  47. Shannon C (1948) A mathematical theory of communication. AT&T Tech J 27:379–423Google Scholar
  48. Shinomoto S, Yutaka S, Hiroshi O (2002) Recording site dependence of the neuronal spiking statistics. Biosystems 67:259–263PubMedCrossRefGoogle Scholar
  49. Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823–2842PubMedCrossRefGoogle Scholar
  50. Soofi ES, Ebrahimi N, Habibullah M (1995) Information distinguishability with application to analysis of failure data. J Am Stat Assoc 90:57–668CrossRefGoogle Scholar
  51. Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys J 7:797–826CrossRefPubMedGoogle Scholar
  52. Stevens CF, Zador A (1995) Information through a spiking neuron. Adv Neural Inf Proc Syst 8:75–81Google Scholar
  53. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and information in spike trains. Phys Rev Lett 80:197–200CrossRefGoogle Scholar
  54. Tarantola A (1994) The inverse problem theory. Elsevier, AmsterdamGoogle Scholar
  55. Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170Google Scholar
  56. Tsybakov AB, van der Meulen EC (1996) Root-n consistent estimators of entropy for densities with unbounded support. Scand J Stat 23:75–83Google Scholar
  57. Vasicek O (1976) A test for normality based on sample entropy. J Stat Soc B 38:54–59Google Scholar
  58. Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol 79:1219–1229PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.The Institute of PhysiologyAcademy of Sciences of The Czech RepublicPrague 4The Czech Republic

Personalised recommendations