Biological Cybernetics

, Volume 93, Issue 4, pp 288–306 | Cite as

Optimization of two-joint arm movements: a model technique or a result of natural selection?

  • Emanuele Lindo Secco
  • Luca Valandro
  • Roberto Caimmi
  • Giovanni Magenes
  • Benedetto Salvato
Original Paper


The fossil record of early hominids suggests that their Arm length, and presumably stature and weight, had a tendency to increase. Using the minimum jerk principle and a related formulation of averaged specific power, ASP, with regard to selected two-joint Arm movements, the current paper explores relationships between ASP, hand trajectory length (or Arm length, or body mass) and mean movement speed, deriving relationships which indicate that ASP is proportional to cubic mean movement speed, but inversely proportional to hand trajectory length (or Arm length, or 1/3 power of body mass). Accordingly, an `ecological niche’ is modeled in a three-parameter space. Either ASP maximization for fixed movement time, or ASP minimization for fixed mean movement speed, taken as selective optimization criterion, allows the increasing of human Arm length during evolution, regardless of the arm-to-forearm length ratio.


Movement Time Length Ratio Movement Speed Hand Path Movement Extent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Averaged specific power


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello L., Dean C. (1990). An introduction to human evolutionary anatomy. Academic, LondonGoogle Scholar
  2. Bevington PR., Robinson DK. (1992). Data reduction and error analysis for the physical sciences, 2nd edn. WCB/McGraw-Hill, BostonGoogle Scholar
  3. Brüwer M., Cruse H. (1990). A network model for the control of the movement of a redundant manipulator. Biol Cybern 62:549–555PubMedCrossRefGoogle Scholar
  4. Burdet E. (2000a). Learning impedance to stabilize unstable dynamics: direct evidence in multijoint movements. Society for Neuroscience AbstractsGoogle Scholar
  5. Burdet E. (2001). The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449PubMedCrossRefGoogle Scholar
  6. Burdet E., Osu R., Franklin DW., Yoshioka T., Milner TE., Kawato M. (2000b). A method for measuring endpoint stiffness during multi-joint arm movements. J Biomech 33:1705–1709CrossRefGoogle Scholar
  7. Churchill SE., Smith FH. (2000). A modern human humerus from the early aurignacian of Vogelherdhohle (Stetten, Germany). Am J Phys Anthropol 112(2):251–273PubMedCrossRefGoogle Scholar
  8. d’Avella A., Saltiel P., Bizzi E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300-308PubMedCrossRefGoogle Scholar
  9. Draper NR., Smith H. (1998). Applied regression analysis, 3rd Edn. Wiley, New YorkGoogle Scholar
  10. Esteki A., Mansour JM. (1996). An experimentally based nonlinear viscoelastic model of joint passive moment. J Biomech 29(4):443–450PubMedCrossRefGoogle Scholar
  11. Flash T., Hogan N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703PubMedGoogle Scholar
  12. Fu KS., Gonzales RC., Lee CSG. (1987). Robotics: control, sensing, vision, and intelligence. McGraw-Hill, New YorkGoogle Scholar
  13. Gomi H., Kawato M. (1997). Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76:163–171PubMedCrossRefGoogle Scholar
  14. Goodall J. (1986). Chimpanzee of Gombe: patterns of behaviour. Harvard University Press, CambridgeGoogle Scholar
  15. Hasler EM., Herzog W., Wu JZ., Muller W., Wyss U. (1999). Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng 27(6):415–88PubMedGoogle Scholar
  16. Hollerbach JM., Flash T. (1982). Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77PubMedCrossRefGoogle Scholar
  17. Lacquaniti F., Terzuolo C., Viviani P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychol 5:115–130CrossRefGoogle Scholar
  18. Landau L., Lifchitz E. (1966). Mechanique. Mir, MoscowGoogle Scholar
  19. Massone L., Bizzi E. (1989). A neural network model for limb trajectory formation. Biol Cybern 61:417–425PubMedCrossRefGoogle Scholar
  20. Mathers K., Henneberg M. (1995). Were we ever that big?. Gradual increase in hominid body size over time. HOMO 46:141–173Google Scholar
  21. Morasso P. (1981). Spatial control of arm movements. Exp Brain Res 42(2):223–227PubMedCrossRefGoogle Scholar
  22. Morasso P., Sanguineti V. (1997). Movement dynamics in speed/accuracy trade-off. Behav Brain Sci 20:319CrossRefGoogle Scholar
  23. Mussa Ivaldi FA., Morasso P., Zaccaria R. (1988). Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biol Cybern 60(1):1–16Google Scholar
  24. Mussa-Ivaldi FA., Hogan N., Bizzi E. (1985). Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5(10):2732–2743PubMedGoogle Scholar
  25. Mussa-Ivaldi FA., Bizzi E. (2000). Motor learning through the combination of primitives. Philos Trans R S Biol Sci 355:1755–1769CrossRefGoogle Scholar
  26. Nelson WL. (1983). Physical principles for economies of skilled movements. Biol Cybern 46:135–147PubMedCrossRefGoogle Scholar
  27. Pheasant S. (1996). Bodyspace: anthropometry, ergonomics and the design of work, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  28. Plamondon R. (1995a). A kinematic theory of rapid human movements: Part I. Movement representation and generation. Biol Cybern 72:295–307Google Scholar
  29. Plamondon R. (1995b). A kinematic theory of rapid human movements: Part II. Movement time and control. Biol Cybern 72:309–320CrossRefGoogle Scholar
  30. Polk JD. (2002). Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. J Exp Biol 205:3399–3412PubMedGoogle Scholar
  31. Pontryagin LS., Boltyanskii VG., Gamkrelidze RV., Mishchenko EF. (1962). The mathematical theory of optimal processes. Interscience Publisher Inc, New YorkGoogle Scholar
  32. Popescu AI. (1999). Bionics, biological systems and optimal design principle. Acta Biotheor 46:299–310CrossRefGoogle Scholar
  33. Preuschoft H. (1971). Body posture and mode of locomotion in early Pleistocene Hominids. Folia Primatologica 14:209–240CrossRefGoogle Scholar
  34. Rose MD. (1991). The process of bipedalization in hominids. In: Coppens Y., Senut B (eds). Origine(s) de la bipédie chez les hominidés. CNRS, Paris pp. 37–48Google Scholar
  35. Ruff CB., Trinkaus E., Walker A., Larsen CS. (1993). Postcranial robusticity in Homo . I.Temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53PubMedCrossRefGoogle Scholar
  36. Secco EL. (2001). Movement control of a 3 d.o.f. artificial finger: dynamic learning and execution of the natural movement. PhD dissertation, PaviaGoogle Scholar
  37. Secco EL., Scheidt R., Patton J., Mussa-Ivaldi FA. (2003). Misrepresentation of limb dynamics induced by the suppression of visual errors. Society of Neuroscience, New OrleansGoogle Scholar
  38. Shadmehr R., Mussa-Ivaldi FA. (1994). Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMedGoogle Scholar
  39. Suzuki M., Matsunami K., Yamazachi Y., Mizuno N. (1996). Application of the minimum jerk model to formation of the trajectory of the centre of mass during multijoint limb movements. Folia Primatol 66:240–252PubMedCrossRefGoogle Scholar
  40. Taylor CR. (1985). Force development during sustained locomotion: a~determinant of gait, speed and metabolic power. J Exp Biol 115:253–262PubMedGoogle Scholar
  41. Taylor CR., Heglund NC., McMahon TA., Lonney TR. (1980). Energetic cost of generating muscular force during running: a comparison of large and small animals. J Exp Biol 86:9–18Google Scholar
  42. Taylor CR., Schmidt-Nielsen K., Raab JL. (1970). Scaling of energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107PubMedGoogle Scholar
  43. Todorov E., Jordan M. (2002). Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235PubMedCrossRefGoogle Scholar
  44. Uno Y., Kawato M., Suzuki R. (1989). Formation and control of optimal trajectory in human multijoint Arm movement—minimum torque-change model. Biol Cybern 61:89–101PubMedCrossRefGoogle Scholar
  45. Valandro L., Caimmi R., Colombo L. (2003). What is hidden behind the concept of energy transformation in ecosystems. Ecol Model 170:185–191CrossRefGoogle Scholar
  46. Wang WJ., Crompton RH., Gunther MM. (2003). Optimum ratio of upper to lower limb lengths in hand-carrying of a load under the assumption of frequency coordination. J Biomechan 36:249–252CrossRefGoogle Scholar
  47. Wang WJ., Crompton RH. (2003). Size and power required for motion with implication for the evolution of early hominids. J Biomech 36:1237–1246PubMedCrossRefGoogle Scholar
  48. West GB., Brown JH. (2004). Life’s universal scaling laws. Phys Today 57:36–42CrossRefGoogle Scholar
  49. Winter DA. (1990). Biomechanics and motor control of human movement. Wiley, New YorkGoogle Scholar
  50. Witte H., Recknagel S., Preuschoft H. (1991). Human body proportions explained on the basis of biomechanical principles. Zeitsch Morphol Anthropol 78:407–423Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Emanuele Lindo Secco
    • 1
  • Luca Valandro
    • 2
  • Roberto Caimmi
    • 3
  • Giovanni Magenes
    • 1
  • Benedetto Salvato
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di PaviaPaviaItaly
  2. 2.Dipartimento di BiologiaUniversità di PadovaPadovaItlay
  3. 3.Dipartimento di AstronomiaUniversità di PadovaPadovaItaly

Personalised recommendations