Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sensory inflow manipulation induces learning-like phenomena in motor behavior



Perceptual and goal-directed behaviors may be improved by repetitive sensory stimulations without practice-based training. Focal muscle vibration (f-MV) modulating the spatiotemporal properties of proprioceptive inflow is well-suited to investigate the effectiveness of sensory stimulation in influencing motor outcomes. Thus, in this study, we verified whether optimized f-MV stimulation patterns might affect motor control of upper limb movements.


To answer this question, we vibrated the slightly tonically contracted anterior deltoid (AD), posterior deltoid (PD), and pectoralis major muscles in different combinations in forty healthy subjects at a frequency of 100 Hz for 10 min in single or repetitive administrations. We evaluated the vibration effect immediately after f-MV application on upper limb targeted movements tasks, and one week later. We assessed target accuracy, movement mean and peak speed, and normalized Jerk using a 3D optoelectronic motion capture system. Besides, we evaluated AD and PD activity during the tasks using wireless electromyography.


We found that f-MV may induce increases (p < 0.05) in movement accuracy, mean speed and smoothness, and changes (p < 0.05) in the electromyographic activity. The main effects of f-MV occurred overtime after repetitive vibration of the AD and PD muscles.


Thus, in healthy subjects, optimized f-MV stimulation patterns might over time affect the motor control of the upper limb movement.

This finding implies that f-MV may improve the individual’s ability to produce expected motor outcomes and suggests that it may be used to boost motor skills and learning during training and to support functional recovery in rehabilitation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Anterior deltoid


Agonist muscle vibration group

Agon 30:

Agonist muscle vibration by repetitive stimulations group


Antagonist muscle vibration group

Anta 30:

Antagonist muscle vibration by repetitive stimulations group


Central nervous system




Focal muscle vibration


Motor cortex


Normalized jerk


Maximal voluntary isometric contraction


Posterior deltoid


Effect size estimation


Sham stimulus group


Somatosensory cortex


Surface electromyography


  1. Allard T, Clark SA, Jenkins WM, Merzenich MM (1991) Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly. J Neurophysiol 66(3):1048–1058. https://doi.org/10.1152/jn.1991.66.3.1048

  2. Aman JE, Elangovan N, Yeh IL, Konczak J (2014) The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci 8:1075. https://doi.org/10.3389/fnhum.2014.01075

  3. Aprile I, Di Sipio E, Germanotta M, Simbolotti C, Padua L (2016) Muscle focal vibration in healthy subjects: evaluation of the effects on upper limb motor performance measured using a robotic device. Eur J Appl Physiol 116(4):729–737. https://doi.org/10.1007/s00421-016-3330-1

  4. Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E (2015) On the analysis of movement smoothness. J Neuroeng Rehabil 12:112. https://doi.org/10.1186/s12984-015-0090-9

  5. Beggs WD, Howarth CI (1972) The accuracy of aiming at a target, some further evidence for a theory of intermittent control. Acta Psychol 36(3):171–177

  6. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD (1996) Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 119(Pt 2):661–674

  7. Beste C, Dinse HR (2013) Learning without training. Curr Biol 23(11):R489–499. https://doi.org/10.1016/j.cub.2013.04.044

  8. Brunetti O, Filippi GM, Lorenzini M, Liti A, Panichi R, Roscini M, Pettorossi VE, Cerulli G (2006) Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(11):1180–1187. https://doi.org/10.1007/s00167-006-0101-2

  9. Brunetti O, Botti FM, Roscini M, Brunetti A, Panichi R, Filippi GM, Biscarini A, Pettorossi VE (2012) Focal vibration of quadriceps muscle enhances leg power and decreases knee joint laxity in female volleyball players. J Sports Med Phys Fitness 52(6):596–605

  10. Burke D, Hagbarth KE, Lofstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol 261(3):695–711

  11. Caliandro P, Celletti C, Padua L, Minciotti I, Russo G, Granata G, La Torre G, Granieri E, Camerota F (2012) Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke. Arch Phys Med Rehabil 93(9):1656–1661. https://doi.org/10.1016/j.apmr.2012.04.002

  12. Camerota F, Celletti C, Suppa A, Galli M, Cimolin V, Filippi GM, La Torre G, Albertini G, Stocchi F, De Pandis MF (2016) Focal muscle vibration improves gait in Parkinson's disease: a pilot randomized controlled trial. Mov Disord Clin Pract 3(6):559–566. https://doi.org/10.1002/mdc3.12323

  13. Camerota F, Celletti C, Di Sipio E, De Fino C, Simbolotti C, Germanotta M, Mirabella M, Padua L, Nociti V (2017) Focal muscle vibration, an effective rehabilitative approach in severe gait impairment due to multiple sclerosis. J Neurol Sci 372:33–39. https://doi.org/10.1016/j.jns.2016.11.025

  14. Carel C, Loubinoux I, Boulanouar K, Manelfe C, Rascol O, Celsis P, Chollet F (2000) Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab 20(3):478–484. https://doi.org/10.1097/00004647-200003000-00006

  15. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79(2):1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117

  16. Contemori S, Biscarini A (2018) Shoulder position sense in volleyball players with infraspinatus atrophy secondary to suprascapular nerve neuropathy. Scand J Med Sci Sports 28(1):267–275. https://doi.org/10.1111/sms.12888

  17. Contemori S, Biscarini A (2019) Isolated infraspinatus atrophy secondary to suprascapular nerve neuropathy results in altered shoulder muscles activity. J Sport Rehabil 28(3):219–228. https://doi.org/10.1123/jsr.2017-0232

  18. Contemori S, Panichi R, Biscarini A (2019) Effects of scapular retraction/protraction position and scapular elevation on shoulder girdle muscle activity during glenohumeral abduction. Hum Mov Sci 64:55–66. https://doi.org/10.1016/j.humov.2019.01.005

  19. Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

  20. Di Pancrazio L, Bellomo RG, Franciotti R, Iodice P, Galati V, D'Andreagiovanni A, Bifolchetti S, Thomas A, Onofrj M, Bonanni L, Saggini R (2013) Combined rehabilitation program for postural instability in progressive supranuclear palsy. NeuroRehabilitation 32(4):855–860. https://doi.org/10.3233/NRE-130909

  21. Dinse HR, Kleibel N, Kalisch T, Ragert P, Wilimzig C, Tegenthoff M (2006) Tactile coactivation resets age-related decline of human tactile discrimination. Ann Neurol 60(1):88–94. https://doi.org/10.1002/ana.20862

  22. Elliott D, Hansen S, Grierson LE, Lyons J, Bennett SJ, Hayes SJ (2010) Goal-directed aiming: two components but multiple processes. Psychol Bull 136(6):1023–1044. https://doi.org/10.1037/a0020958

  23. Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Roberts JW, Grierson LE, Hansen S, Bennett SJ (2017) The multiple process model of goal-directed reaching revisited. Neurosci Biobehav Rev 72:95–110. https://doi.org/10.1016/j.neubiorev.2016.11.016

  24. Fallon JB, Macefield VG (2007) Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve 36(1):21–29. https://doi.org/10.1002/mus.20796

  25. Farabet A, Souron R, Millet GY, Lapole T (2016) Changes in tibialis anterior corticospinal properties after acute prolonged muscle vibration. Eur J Appl Physiol 116(6):1197–1205. https://doi.org/10.1007/s00421-016-3378-y

  26. Fattorini L, Ferraresi A, Rodio A, Azzena GB, Filippi GM (2006) Motor performance changes induced by muscle vibration. Eur J Appl Physiol 98(1):79–87. https://doi.org/10.1007/s00421-006-0250-5

  27. Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE (2009) Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. Arch Phys Med Rehabil 90(12):2019–2025. https://doi.org/10.1016/j.apmr.2009.08.139

  28. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

  29. Forner-Cordero A, Steyvers M, Levin O, Alaerts K, Swinnen SP (2008) Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav Brain Res 190(1):41–49. https://doi.org/10.1016/j.bbr.2008.02.019

  30. Gilhodes JC, Roll JP, Tardy-Gervet MF (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp Brain Res 61(2):395–402

  31. Gilliaux M, Lejeune T, Detrembleur C, Sapin J, Dehez B, Stoquart G (2012) A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study. J Rehabil Med 44(3):210–217. https://doi.org/10.2340/16501977-0926

  32. Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movementsi independence of direction and extent variability. Exp Brain Res 99(1):97–111

  33. Gordon J, Ghilardi MF, Ghez C (1995) Impairments of reaching movements in patients without proprioception. I. Spatial errors. J Neurophysiol 73(1):347–360. https://doi.org/10.1152/jn.1995.73.1.347

  34. Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89(5):2396–2405. https://doi.org/10.1152/jn.01020.2002

  35. Han J, Kim E, Jung J, Lee J, Sung H, Kim J (2014) Effect of muscle vibration on spatiotemporal gait parameters in patients with Parkinson's disease. J Phys Ther Sci 26(5):671–673. https://doi.org/10.1589/jpts.26.671

  36. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

  37. Hospod V, Aimonetti JM, Roll JP, Ribot-Ciscar E (2007) Changes in human muscle spindle sensitivity during a proprioceptive attention task. J Neurosci 27(19):5172–5178. https://doi.org/10.1523/JNEUROSCI.0572-07.2007

  38. Ivanenko YP, Grasso R, Lacquaniti F (2000) Influence of leg muscle vibration on human walking. J Neurophysiol 84(4):1737–1747. https://doi.org/10.1152/jn.2000.84.4.1737

  39. Johannsen L, Ackermann H, Karnath HO (2003) Lasting amelioration of spatial neglect by treatment with neck muscle vibration even without concurrent training. J Rehabil Med 35(6):249–253

  40. Karnath HO, Reich E, Rorden C, Fetter M, Driver J (2002) The perception of body orientation after neck-proprioceptive stimulation. Effects of time and of visual cueing. Exp Brain Res 143(3):350–358. https://doi.org/10.1007/s00221-001-0996-2

  41. Kiiski J, Heinonen A, Jarvinen TL, Kannus P, Sievanen H (2008) Transmission of vertical whole body vibration to the human body. J Bone Miner Res 23(8):1318–1325. https://doi.org/10.1359/jbmr.080315

  42. Lacquaniti F, Soechting JF (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2(4):399–408

  43. Lau RW, Yip SP, Pang MY (2012) Whole-body vibration has no effect on neuromotor function and falls in chronic stroke. Med Sci Sports Exerc 44(8):1409–1418. https://doi.org/10.1249/MSS.0b013e31824e4f8c

  44. Li W, Li C, Xiang Y, Ji L, Hu H, Liu Y (2019) Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration in healthy subjects and subacute stroke patients: an EEG Study. Brain Res. https://doi.org/10.1016/j.brainres.2019.146338

  45. Longo MR, Kammers MP, Gomi H, Tsakiris M, Haggard P (2009) Contraction of body representation induced by proprioceptive conflict. Curr Biol 19(17):R727–728. https://doi.org/10.1016/j.cub.2009.07.024

  46. Lopez S, Bini F, Del Percio C, Marinozzi F, Celletti C, Suppa A, Ferri R, Staltari E, Camerota F, Babiloni C (2017) Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects. Neuroscience 352:236–248. https://doi.org/10.1016/j.neuroscience.2017.03.015

  47. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21. https://doi.org/10.1016/j.neuron.2004.09.012

  48. Marconi B, Filippi GM, Koch G, Pecchioli C, Salerno S, Don R, Camerota F, Saraceni VM, Caltagirone C (2008) Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J Neurol Sci 275(1–2):51–59. https://doi.org/10.1016/j.jns.2008.07.025

  49. Matsumoto Y, Griffin MJ (2002) Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration. J Biomech Eng 124(5):527–532

  50. McCully SP, Suprak DN, Kosek P, Karduna AR (2007) Suprascapular nerve block results in a compensatory increase in deltoid muscle activity. J Biomech 40(8):1839–1846. https://doi.org/10.1016/j.jbiomech.2006.07.010

  51. Murillo N, Kumru H, Vidal-Samso J, Benito J, Medina J, Navarro X, Valls-Sole J (2011) Decrease of spasticity with muscle vibration in patients with spinal cord injury. Clin Neurophysiol 122(6):1183–1189. https://doi.org/10.1016/j.clinph.2010.11.012

  52. Murillo N, Valls-Sole J, Vidal J, Opisso E, Medina J, Kumru H (2014) Focal vibration in neurorehabilitation. Eur J Phys Rehabil Med 50(2):231–242

  53. Neumann DA (2013) Kinesiology of the musculoskeletal system-e-book: foundations for rehabilitation. Elsevier Health Sciences, Amsterdam

  54. Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL (2010) Somatosensory plasticity and motor learning. J Neurosci 30(15):5384–5393. https://doi.org/10.1523/JNEUROSCI.4571-09.2010

  55. Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M (2002) Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88(2):991–1004. https://doi.org/10.1152/jn.2002.88.2.991

  56. Panichi R, Botti FM, Ferraresi A, Faralli M, Kyriakareli A, Schieppati M, Pettorossi VE (2011) Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception. Hum Mov Sci 30(2):314–332. https://doi.org/10.1016/j.humov.2010.10.005

  57. Panics G, Tallay A, Pavlik A, Berkes I (2008) Effect of proprioception training on knee joint position sense in female team handball players. Br J Sports Med 42(6):472–476. https://doi.org/10.1136/bjsm.2008.046516

  58. Paoloni M, Tavernese E, Fini M, Sale P, Franceschini M, Santilli V, Mangone M (2014) Segmental muscle vibration modifies muscle activation during reaching in chronic stroke: A pilot study. NeuroRehabilitation 35(3):405–414. https://doi.org/10.3233/NRE-141131

  59. Pettorossi VE, Schieppati M (2014) Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci 8:895. https://doi.org/10.3389/fnhum.2014.00895

  60. Pettorossi VE, Panichi R, Botti FM, Biscarini A, Filippi GM, Schieppati M (2015) Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin. Clin Neurophysiol 126(10):1886–1900. https://doi.org/10.1016/j.clinph.2015.02.057

  61. Pleger B, Foerster AF, Ragert P, Dinse HR, Schwenkreis P, Malin JP, Nicolas V, Tegenthoff M (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40(3):643–653

  62. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92(4):1651–1697. https://doi.org/10.1152/physrev.00048.2011

  63. Ribot-Ciscar E, Butler JE (1985) Thomas CK (2003) Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury. J Appl Physiol 94(6):2358–2367. https://doi.org/10.1152/japplphysiol.00894.2002

  64. Ribot-Ciscar E, Roll JP, Tardy-Gervet MF (1985) Harlay F (1996) Alteration of human cutaneous afferent discharges as the result of long-lasting vibration. J Appl Physiol 80(5):1708–1715. https://doi.org/10.1152/jappl.1996.80.5.1708

  65. Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112(8):1461–1469

  66. Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, Berardelli A (2018) Plasticity induced in the human spinal cord by focal muscle vibration. Front Neurol 9:935. https://doi.org/10.3389/fneur.2018.00935

  67. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, Stein J, Hogan N (2002) Movement smoothness changes during stroke recovery. J Neurosci 22(18):8297–8304

  68. Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47(2):177–190

  69. Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76(1):213–222

  70. Rosenkranz K, Rothwell JC (2003) Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 551(Pt 2):649–660. https://doi.org/10.1113/jphysiol.2003.043752

  71. Rosenkranz K, Rothwell JC (2004) The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 561(Pt 1):307–320. https://doi.org/10.1113/jphysiol.2004.069328

  72. Rosenkranz K, Rothwell JC (2012) Modulation of proprioceptive integration in the motor cortex shapes human motor learning. J Neurosci 32(26):9000–9006. https://doi.org/10.1523/JNEUROSCI.0120-12.2012

  73. Rosenkranz K, Butler K, Williamon A, Rothwell JC (2009) Regaining motor control in musician's dystonia by restoring sensorimotor organization. J Neurosci 29(46):14627–14636. https://doi.org/10.1523/JNEUROSCI.2094-09.2009

  74. Saggini R, Bellomo RG (2015) Integration to focal vibration in neurorehabilitation. Eur J Phys Rehabil Med 51(4):508

  75. Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70(5):2136–2147

  76. Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73(2):820–835. https://doi.org/10.1152/jn.1995.73.2.820

  77. Scarduzio M, Panichi R, Pettorossi VE, Grassi S (2012) The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei. Neuroscience 223:1–11. https://doi.org/10.1016/j.neuroscience.2012.07.039

  78. Schindler I, Kerkhoff G, Karnath HO, Keller I, Goldenberg G (2002) Neck muscle vibration induces lasting recovery in spatial neglect. J Neurol Neurosurg Psychiatry 73(4):412–419

  79. Seidel H (2005) On the relationship between whole-body vibration exposure and spinal health risk. Ind Health 43(3):361–377

  80. Seitz AR, Dinse HR (2007) A common framework for perceptual learning. Curr Opin Neurobiol 17(2):148–153. https://doi.org/10.1016/j.conb.2007.02.004

  81. Sejnowski TJ (1998) Neurobiology. Making smooth moves. Nature 394(6695):725–726. https://doi.org/10.1038/29404

  82. Shishov N, Melzer I, Bar-Haim S (2017) Parameters and measures in assessment of motor learning in neurorehabilitation: a systematic review of the literature. Front Hum Neurosci 11:82. https://doi.org/10.3389/fnhum.2017.00082

  83. Sorensen KL, Hollands MA, Patla E (2002) The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Exp Brain Res 143(1):24–34. https://doi.org/10.1007/s00221-001-0962-z

  84. Souron R, Besson T, Millet GY, Lapole T (2017) Acute and chronic neuromuscular adaptations to local vibration training. Eur J Appl Physiol 117(10):1939–1964. https://doi.org/10.1007/s00421-017-3688-8

  85. Steyvers M, Levin O, Verschueren SM, Swinnen SP (2003) Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res 151(1):9–14. https://doi.org/10.1007/s00221-003-1427-3

  86. Stinear CM, Byblow WD (2003) Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 89(4):2014–2020. https://doi.org/10.1152/jn.00925.2002

  87. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146(1):159–170. https://doi.org/10.1006/exnr.1997.6507

  88. Toscano M, Celletti C, Vigano A, Altarocca A, Giuliani G, Jannini TB, Mastria G, Ruggiero M, Maestrini I, Vicenzini E, Altieri M, Camerota F, Di Piero V (2019) Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study. Front Neurol 10:115. https://doi.org/10.3389/fneur.2019.00115

  89. Ushiyama J, Masani K, Kouzaki M, Kanehisa H (1985) Fukunaga T (2005) Difference in aftereffects following prolonged Achilles tendon vibration on muscle activity during maximal voluntary contraction among plantar flexor synergists. J Appl Physiol 98(4):1427–1433. https://doi.org/10.1152/japplphysiol.00613.2004

  90. Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neurosci 31(47):16907–16915. https://doi.org/10.1523/JNEUROSCI.2737-11.2011

  91. White O, Proske U (2009) Illusions of forearm displacement during vibration of elbow muscles in humans. Exp Brain Res 192(1):113–120. https://doi.org/10.1007/s00221-008-1561-z

  92. Wolpaw JR (2018) The negotiated equilibrium model of spinal cord function. J Physiol 596(16):3469–3491. https://doi.org/10.1113/JP275532

  93. Wong JD, Kistemaker DA, Chin A, Gribble PL (2012) Can proprioceptive training improve motor learning? J Neurophysiol 108(12):3313–3321. https://doi.org/10.1152/jn.00122.2012

  94. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B, International Society of B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

Download references


This work was supported by the Italian Ministry of Health (grant WFR RF-2011–02352379) and by the Fondazione Cassa di Risparmio di Perugia (grant 2015.0328.021).

Author information

RP, conceived and designed research; SC, AB, AF, CO, FC, conducted experiments; RP, SC, analyzed data; RP, SC, CVD, interpreted results of experiments; RP, drafted manuscript; RP, SC, CVD, JAS, AB, VEP, edited and revised manuscript. All authors read and approved the final version of manuscript.

Correspondence to Roberto Panichi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lori Ann Vallis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contemori, S., Dieni, C.V., Sullivan, J.A. et al. Sensory inflow manipulation induces learning-like phenomena in motor behavior. Eur J Appl Physiol (2020). https://doi.org/10.1007/s00421-020-04320-w

Download citation


  • Motor control
  • Proprioception
  • Sensorimotor plasticity
  • Focal vibration
  • Targeted movements
  • Upper limb movement