Advertisement

Transcutaneous electrical nerve stimulation improves fatigue performance of the treated and contralateral knee extensors

  • D. G. BehmEmail author
  • E. M. Colwell
  • G. M. J. Power
  • H. Ahmadi
  • A. S. M. Behm
  • A. Bishop
  • C. Murph
  • J. Pike
  • B. McAssey
  • K. Fraser
  • S. Kearley
  • M. Ryan
Original Article

Abstract

Purpose

Transcutaneous electrical nerve stimulation (TENS) can reduce acute and chronic pain. Unilateral fatigue can produce discomfort in the affected limb and force and activation deficits in contralateral non-exercised muscles. TENS-induced local pain analgesia effects on non-local fatigue performance are unknown. Hence, the aim of the study was to determine if TENS-induced pain suppression would augment force output during a fatiguing protocol in the treated and contralateral muscles.

Methods

Three experiments were integrated for this article. Following pre-tests, each experiment involved 20 min of TENS, sham, or a control condition on the dominant quadriceps. Then either the TENS-treated quadriceps (TENS_Treated) or the contralateral quadriceps (TENS_Contra) was tested. In a third experiment, the TENS and sham conditions involved two\; 100-s isometric maximal voluntary contractions (MVC) (30-s recovery) followed by testing of the contralateral quadriceps (TENS_Contra-Fatigue). Testing involved single knee extensors (KE) MVCs (pre- and post-test) and a post-test 30% MVC to task failure.

Results

The TENS-treated study induced greater (p = 0.03; 11.0%) time to KE (treated leg) failure versus control. The TENS_Contra-Fatigue induced significant (p = 0.04; 11.7%) and near-significant (p = 0.1; 7.1%) greater time to contralateral KE failure versus sham and control, respectively. There was a 14.5% (p = 0.02) higher fatigue index with the TENS (36.2 ± 10.1%) versus sham (31.6 ± 10.6%) conditions in the second fatigue intervention set (treated leg). There was no significant post-fatigue KE fatigue interaction with the TENS_Contra.

Conclusions

Unilateral TENS application to the dominant KE prolonged time to failure in the treated and contralateral KE suggesting a global pain modulatory response.

Keywords

Crossover Endurance Pain Strength Isometric 

Abbreviations

DNIC

Diffuse noxious inhibitory control

EMG

Electromyography

KE

Knee extensors

MVC

Maximal voluntary contractions

NLMF

Non-local muscle fatigue

rms

Root mean square of the electromyography signal

TENS

Transcutaneous electrical nerve stimulation

TENS_Treated

TENS-treated dominant quadriceps with testing of treated dominant quadriceps

TENS_Contra

TENS-treated dominant quadriceps with testing of contralateral non-dominant quadriceps

TENS_Contra-Fatigue

TENS-treated dominant quadriceps subjected to a fatigue protocol (2 × 100 s MVCs) with testing of treated dominant and untreated non-dominant quadriceps

Notes

Acknowledgements

The study was funded by Natural Sciences and Engineering Research Council of Canada (Grant number 2017-03728).

Authors contributions

BDG: data interpretation and writing of manuscript. CEM, PGMJ, AH, BASM, BA, MC, PJ, MB, FK, KS, RM: data collection, analysis, and review of manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest with the contents of this manuscript.

References

  1. Aboodarda SJ, Copithorne DB, Power KE, Drinkwater E, Behm DG (2015a) Elbow flexor fatigue modulates central excitability of the knee extensors. Appl Physiol Nutr Metab 40(9):924–930.  https://doi.org/10.1139/apnm-2015-0088 CrossRefPubMedGoogle Scholar
  2. Aboodarda SJ, Spence AJ, Button DC (2015b) Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet Disord 16:265.  https://doi.org/10.1186/s12891-015-0729-5 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aboodarda SJ, Sambaher N, Behm DG (2016) Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii. Scand J Med Sci Sports 26(11):1301–1312.  https://doi.org/10.1111/sms.12596 CrossRefPubMedGoogle Scholar
  4. Aboodarda SJ, Sambaher N, Millet GY, Behm DG (2017) Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neurosci 340:477–486.  https://doi.org/10.1016/j.neuroscience.2016.10.065 CrossRefGoogle Scholar
  5. Ainsworth L, Budelier K, Clinesmith M, Fiedler A, Landstrom R, Leeper BJ, Moeller L, Mutch S, O'Dell K, Ross J, Radhakrishnan R, Sluka KA (2006) Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120(1–2):182–187.  https://doi.org/10.1016/j.pain.2005.10.030 CrossRefPubMedGoogle Scholar
  6. Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43(11):2039–2045.  https://doi.org/10.1249/MSS.0b013e31821f59ab CrossRefPubMedGoogle Scholar
  7. Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol (1985) 115(3):355–364.  https://doi.org/10.1152/japplphysiol.00049.2013 CrossRefGoogle Scholar
  8. Asmussen E, Mazin B (1978) A central nervous component in local muscular fatigue. Eur J Appl Physiol 38:9–15CrossRefGoogle Scholar
  9. Astokorki AH, Mauger AR (2017) Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports 27(3):309–317.  https://doi.org/10.1111/sms.12659 CrossRefPubMedGoogle Scholar
  10. Astokorki AHY, Mauger AR (2017) Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance. Eur J Appl Physiol 117(3):483–492.  https://doi.org/10.1007/s00421-016-3532-6 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Behm DG (1993) Debilitation to adaptation. J Strength Cond Res 7(2):65–75Google Scholar
  12. Behm DG (2004) Force maintenance with submaximal fatiguing contractions. Can J Appl Physiol 29(3):274–290CrossRefGoogle Scholar
  13. Behm DG, Cavanaugh T, Quigley P, Reid JC, Nardi PS, Marchetti PH (2016) Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol 116(1):241–249.  https://doi.org/10.1007/s00421-015-3270-1 CrossRefPubMedGoogle Scholar
  14. Bergh U, Ekblom A (1979) Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand 107(1):33–37CrossRefGoogle Scholar
  15. Button DC, Behm DG (2008) The effect of stimulus anticipation on the interpolated twitch technique. J Sports Sci Med 7(520):524Google Scholar
  16. Cavanaugh MT, Doweling A, Young JD, Quigley PJ, Hodgson DD, Whitten JH, Reid JC, Aboodarda SJ, Behm DG (2017) An acute session of roller massage prolongs voluntary torque development and diminishes evoked pain. Eur J Appl Physiol 117(1):109–117.  https://doi.org/10.1007/s00421-016-3503-y CrossRefPubMedGoogle Scholar
  17. Chaouachi A, Padulo J, Kasmi S, Othmen AB, Chatra M, Behm DG (2017) Unilateral static and dynamic hamstrings stretching increases contralateral hip flexion range of motion. Clin Physiol Funct Imaging 37(1):23–29.  https://doi.org/10.1111/cpf.12263 CrossRefPubMedGoogle Scholar
  18. Clarke SJ, Hellon RF, Lind AR (1958) The duration of sustained contractions of the human forearm at different muscle temperatures. J Physiol (London) 143:454–473CrossRefGoogle Scholar
  19. Cohen J (1988) Statistical power analysis for the behavioural sciences. L. Erbraum Associates, Hillside, pp 12–82Google Scholar
  20. Dailey DL, Rakel BA, Vance CGT, Liebano RE, Anand AS, Bush HM, Lee KS, Lee JE, Sluka KA (2013) Transcutaneous electrical nerve stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain 154(11):2554–2562CrossRefGoogle Scholar
  21. Degens H, Veerkamp JH (1994) Changes in oxidative capacity and fatigue resistance in skeletal muscle. Int J Biochem 26(7):871–878CrossRefGoogle Scholar
  22. Del Vecchio A, Negro F, Felici F, Farina D (2017) Associations between motor unit action potential parameters and surface EMG features. J Appl Physiol 123:835–843CrossRefGoogle Scholar
  23. Denegar CR, Perrin DH (1992) Effect of transcutaneous Eeectrical nerve stimulation, cold, and a combination treatment on pain, decreased range of motion, and strength loss associated with delayed onset muscle soreness. J Athletic Train 27(3):20–206Google Scholar
  24. DeSantana JM, Walsh DM, Vance C, Rakel BA, Sluka KA et al (2008) Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep 10(6):492–499CrossRefGoogle Scholar
  25. Doix AC, Lefevre F, Colson SS (2013) Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS ONE ONE 8(5):e64910.  https://doi.org/10.1371/journal.pone.0064910 CrossRefGoogle Scholar
  26. Drinkwater EJ, Behm DG (2007) Effects of 22 degrees C muscle temperature on voluntary and evoked muscle properties during and after high-intensity exercise. Appl Physiol Nutr Metab 32(6):1043–1051.  https://doi.org/10.1139/H07-069 CrossRefPubMedGoogle Scholar
  27. Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72(5):1631–1648CrossRefGoogle Scholar
  28. Fitts RH, Metzger JM (1993) Mechanisms of muscular fatigue. Med Sport Sci 38:248–268CrossRefGoogle Scholar
  29. Halperin I, Aboodarda SJ, Basset FA, Byrne JM, Behm DG (2014) Pacing strategies during repeated maximal voluntary contractions. Eur J Appl Physiol 114(7):1413–1420.  https://doi.org/10.1007/s00421-014-2872-3 CrossRefPubMedGoogle Scholar
  30. Halperin I, Aboodarda SJ, Behm DG (2014) Knee extension fatigue attenuates repeated force production of the elbow flexors. Eur J Sport Sci 14(8):823–829.  https://doi.org/10.1080/17461391.2014.911355 CrossRefPubMedGoogle Scholar
  31. Halperin I, Copithorne D, Behm DG (2014) Unilateral isometric muscle fatigue decreases force production and activation of contralateral knee extensors but not elbow flexors. Appl Physiol Nutr Metab 39(12):1338–1344.  https://doi.org/10.1139/apnm-2014-0109 CrossRefPubMedGoogle Scholar
  32. Halperin I, Chapman DW, Behm DG (2015) Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol 115(10):2031–2048.  https://doi.org/10.1007/s00421-015-3249-y CrossRefPubMedGoogle Scholar
  33. Hamilton AR, Behm DG (2017) The effect of prior knowledge of test endpoint on non-local muscle fatigue. Eur J Appl Physiol 117(4):651–663.  https://doi.org/10.1007/s00421-016-3526-4 CrossRefPubMedGoogle Scholar
  34. Houston ME, Grange RW (1990) Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Physiol Pharmacol 68:908–913CrossRefGoogle Scholar
  35. Houston ME, Green HJ, Stull JT (1985) Myosin light chain phosphorylation and isometric twitch potentiation in intact human muscle. PflÅgers Arch Eur J Physiol 403:348–352CrossRefGoogle Scholar
  36. Jaafar H, Lajili H (2018) The influence of verbal instruction on measurement reliability and explosive neuromuscular performance of the knee extensors. J Hum Kinet 65:21–34.  https://doi.org/10.2478/hukin-2018-0031 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Johnson M, Martinson M (2007) Efficacy of electrical nerve stimulation for chronic musculoskeletal pain: a meta-analysis of randomized controlled trials. Pain 130(1–2):157–165.  https://doi.org/10.1016/j.pain.2007.02.007 CrossRefPubMedGoogle Scholar
  38. Kawamoto JE, Aboodarda SJ, Behm DG (2014) Effect of differing intensities of fatiguing dynamic contractions on contralateral homologous muscle performance. J Sports Sci Med 13(4):836–845PubMedPubMedCentralGoogle Scholar
  39. Kennedy A, Hug F, Sveistrup H, Guevel A (2013) Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. Eur J Appl Physiol 113:559–566.  https://doi.org/10.1007/s00421-012-2462-1 CrossRefPubMedGoogle Scholar
  40. Le Bars D, Villanueva L, Bouhassira D, Willer JC (1992) Diffuse noxious inhibitory controls (DNIC) in animals and in man. Patol Fiziol Eksp Ter 4:55–65Google Scholar
  41. Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(1):291–298CrossRefGoogle Scholar
  42. Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M (1997) Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports 7(4):195–202CrossRefGoogle Scholar
  43. Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflug Archiv Eur J Physiol 454(6):957–969.  https://doi.org/10.1007/s00424-007-0243-1 CrossRefGoogle Scholar
  44. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979CrossRefGoogle Scholar
  45. Mense S (2000) Neurobiological concepts of fibromyalgia–the possible role of descending spinal tracts. Scand J Rheumatol Suppl 113:24–29CrossRefGoogle Scholar
  46. Moayedi M, Davis KD (2013) Theories of pain: from specificity to gate control. J Neurophysiol 109(1):5–12.  https://doi.org/10.1152/jn.00457.2012 CrossRefPubMedGoogle Scholar
  47. Naik JS, Valic Z, Buckwalter JB, Clifford PS (1999) Rapid vasodilation in response to abrief tetanic muscle contraction. J Appl Physiol 87(5):1741–1746CrossRefGoogle Scholar
  48. Pageaux B, Marcora SM, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45(12):2254–2264.  https://doi.org/10.1249/MSS.0b013e31829b504a CrossRefPubMedGoogle Scholar
  49. Pageaux B, Lepers R, Dietz KC, Marcora SM (2014) Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol 114(5):1095–1105.  https://doi.org/10.1007/s00421-014-2838-5 CrossRefPubMedGoogle Scholar
  50. Pietrosimone BG, Saliba SA, Hart JM, Hertel J, Ingersoll CD (2010) Contralateral effects of disinhibitory tens on quadriceps function in people with knee osteoarthritis following unilateral treatment. N Am J Sports Phy Ther 5(3):111–121Google Scholar
  51. Post M, Bayrak S, Kernell D, Zijdewind I (2008) Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle. J Appl Physiol 105(1):70–82.  https://doi.org/10.1152/japplphysiol.01298.2007 CrossRefPubMedGoogle Scholar
  52. Rattey J, Martin PG, Kay D, Cannon J, Marino FE (2006) Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect. Pflugers Archiv Eur J Physiol 452(2):199–207.  https://doi.org/10.1007/s00424-005-0027-4 CrossRefGoogle Scholar
  53. Rendos NK, Harriell K, Qazi S, Regis RC, Alipio TC, Signorile JF (2018) Variations in verbal encouragement modify isokinetic performance. J Hum Kinet 65:21–34.  https://doi.org/10.2478/hukin-2018-0031 CrossRefGoogle Scholar
  54. Sabino GS, Santos CM, Francischi JN et al (2008) Release of endogenous opioids following transcutaneous electric nerve stimulation in an experimental model of acute inflammatory pain. J Pain 9:157–163CrossRefGoogle Scholar
  55. Sambaher N, Aboodarda SJ, Behm DG (2016) Bilateral knee extensor fatigue modulates force and responsiveness of the corticospinal pathway in the non-fatigued, dominant elbow flexors. Front Hum Neurosci 10:18.  https://doi.org/10.3389/fnhum.2016.00018 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sidhu SK, Weavil JC, Venturelli M, Garten RS, Rossman MJ, Richardson RS, Gmelch BS, Morgan DE, Amann M (2014) Spinal mu-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. J Physiol 592(22):5011–5024.  https://doi.org/10.1113/jphysiol.2014.275438 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sigurdsson A, Maixner W (1994) Effects of experimental and clinical noxious counterirritants on pain perception. Pain 57(3):265–275CrossRefGoogle Scholar
  58. Sluka KA, Walsh D (2003) Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain 4(3):109–121CrossRefGoogle Scholar
  59. Somers DL, Clemente FR (2006) Transcutaneous electrical nerve stimulation for the management of neuropathic pain: the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type II. Phys Ther 86(5):698–709PubMedGoogle Scholar
  60. Takahashi K, Maruyama A, Maeda M, Etoh S, Hirakoba K, Kawahira K, Rothwell JC (2009) Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex. Clin Neurophysiol 120(1):198–203.  https://doi.org/10.1016/j.clinph.2008.10.003 CrossRefPubMedGoogle Scholar
  61. Takahashi K, Maruyama A, Hirakoba K, Maeda M, Etoh S, Kawahira K, Rothwell JC (2011) Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb. Brain Stimulation 4(2):90–96.  https://doi.org/10.1016/j.brs.2010.07.001 CrossRefPubMedGoogle Scholar
  62. Vance CG, Dailey DL, Rakel BA, Sluka KA (2014) Using TENS for pain control: the state of the evidence. Pain Manag 4(3):197–209.  https://doi.org/10.2217/pmt.14.13 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Whalen A, Farrell K, Roberts S, Smith H, Behm DG (2019) Topical analgesic improved or maintained ballistic hip flexion range of motion with treated and untreated legs. J Sport Sci Med 18:552–558Google Scholar
  64. Zijdewind I, Zwarts MJ, Kernell D (1998) Influence of a voluntary fatigue test on the contralateral homologous muscle in humans? Neurosci Lett 253(1):41–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Human Kinetics and RecreationMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations