European Journal of Applied Physiology

, Volume 119, Issue 3, pp 633–643 | Cite as

Comparison between men and women of volume regulating hormones and aquaporin-2 excretion following graded central hypovolemia

  • Nandu Goswami
  • Johannes Reichmuth
  • Annarita Di Mise
  • Bianca Brix
  • Andreas Roessler
  • Mariangela Centrone
  • Marianna Ranieri
  • Annamaria Russo
  • Natale Gaspare De Santo
  • Grazia Tamma
  • Ferdinando Carlo SassoEmail author
  • Giovanna ValentiEmail author
Original Article


Central hypovolemia induced by orthostatic loading causes reno-vascular changes that can lead to orthostatic intolerance. In this study, we investigated volume regulating hormonal responses and reno-vascular changes in male and female subjects as they underwent central hypovolemia, induced by graded lower body negative pressure (LBNP). Aquaporin-2 (AQP2) excretion was measured as a biomarker for the renal system response to vasopressin. 37 young healthy subjects (n = 19 males; n = 18 females) were subjected to graded LBNP until − 40 mmHg LBNP. Under resting conditions, males had significantly higher copeptin (a stable peptide derived from vasopressin) levels compared with females. Adrenocorticotropin (ACTH), adrenomedullin (ADM), vasopressin (AVP) and brain natriuretic peptide (BNP) were not affected by our experimental protocol. Nevertheless, an analysis of ADM and BNP with the data normalized as percentages of the baseline value data showed an increase from baseline to 10 min after recovery in the males in ADM and in the females in BNP. Analysis of BNP and ADM raises the possibility of a preferential adaptive vascular response to central hypovolemia in males as shown by the normalized increase in ADM, whereas females showed a preferential renal response as shown by the normalized increase in BNP. Furthermore, our results suggest that there might be a difference between men and women in the copeptin response to alterations in orthostatic loading, simulated either using LBNP or during posture changes.


Orthostatic loading Lower body negative pressure Vasopressin Copeptin Adrenomedullin Aquaporins 



Adrenocorticotropic hormone




Atrial natriuretic peptide


Aquaporin 2


Arginine vasopressin


Brain natriuretic peptide


Central venous pressure


Head up tilt


Lower body negative pressure


Renin–angiotensin–aldosterone system



We thank the participants for their time and co-operation.

Author contributions

NG designed the experiments wrote the manuscript. JR designed the experiments, performed the experiments, and analyzed the data. ADM performed the experiments and analyzed the data. BB performed the experiments and analyzed the data. AR performed the experiments and analyzed the data. MC performed the experiments and analyzed the data. MR performed the experiments and analyzed the data. AR performed the experiments and analyzed the data. NGDS critical reading of the manuscript. GT performed the experiments and analyzed the data. FCS designed the experiments and wrote the manuscript. GV designed the experiments and wrote the manuscript.


This study was supported by ASI (Italian Space Agency, Grant number 2013-091-R.0) to FCS and GV.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Alboni P, Furlan R (eds) (2014) Vasovagal syncope. Springer, New York, p 44fGoogle Scholar
  2. Angeletti S, Dicuonzo G, Fioravanti M, Cesaris M, Fogolari M, Lo Presti A, Ciccozzi M, De Florio L (2015) Procalcitonin, MR-proadrenomedullin, and cytokines measurement in sepsis diagnosis: advantages from test combination. Dis Markers 2015:1–14CrossRefGoogle Scholar
  3. Bankir L, Bichet DG, Morgenthaler NG (2017) Vasopressin: physiology, assessment and osmosensation. J Intern Med 282(4):284–297PubMedCrossRefGoogle Scholar
  4. Barat C, Simpson L, Breslow E (2004) Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry (Mosc) 43(25):8191–8203CrossRefGoogle Scholar
  5. Bichet DG (2016) Vasopressin at central levels and consequences of dehydration. Ann Nutr Metab 2016 68(suppl 2):19–23PubMedCrossRefGoogle Scholar
  6. Cignarelli M, De Pergola G, Paternostro A, Corso M, Cospite MR, Centaro GM, Giorgino R (1986) Arginine-vasopressin response to supine-erect posture change: an index for evaluation of the integrity of the afferent component of baroregulatory system in diabetic neuropathy. Diabète Métabolisme 12(1):28–33PubMedGoogle Scholar
  7. Convertino VA, Tripp LD, Ludwig DA, Duff J, Chelette TL (1998) Female exposure to high G: chronic adaptations of cardiovascular functions. Aviat Space Environ Med 69(9):875–882PubMedGoogle Scholar
  8. Crofton JT, Dustan H, Share L, Brooks DP (1986) Vasopressin secretion in normotensive black and white men and women on normal and low sodium diets. J Endocrinol 108(2):191–199PubMedCrossRefGoogle Scholar
  9. de Bree FM, Burbach JP (1998) Structure-function relationships of the vasopressin prohormone domains. Cell Mol Neurobiol 18(2):173–191PubMedCrossRefGoogle Scholar
  10. Dobsa L, Edozien KC (2013) Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem Medica 23(2):172–190CrossRefGoogle Scholar
  11. Forsling ML, Strömberg P, Åkerlund M (1982) Effect of ovarian steroids on vasopressin secretion. J Endocrinol 95(1):147–151PubMedCrossRefGoogle Scholar
  12. Franke WD, Johnson CP, Steinkamp JA, Wang R, Halliwill JR (2003) Cardiovascular and autonomic responses to lower body negative pressure: do not explain gender differences in orthostatic tolerance. Clin Auton Res Off J Clin Auton Res Soc 13(1):36–44CrossRefGoogle Scholar
  13. Fu Q, Arbab-Zadeh A, Perhonen MA, Zhang R, Zuckerman JH, Levine BD (2004) Hemodynamics of orthostatic intolerance: implications for gender differences. Am J Physiol Heart Circ Physiol 286(1):H449–H457PubMedCrossRefGoogle Scholar
  14. Goldsmith SR, Francis GS, Cowley AW, Cohn JN (1982) Response of vasopressin and norepinephrine to lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 243(6):H970–H973CrossRefGoogle Scholar
  15. Goswami N, Loeppky JA, Hinghofer-Szalkay H (2008) LBNP: past protocols and technical considerations for experimental design. Aviat Space Environ Med 2008; 79(5):459–471PubMedCrossRefGoogle Scholar
  16. Hinghofer-Szalkay H, Lackner HK, Rössler A, Narath B, Jantscher A, Goswami N (2011) Hormonal and plasma volume changes after presyncope. Eur J Clin Investig 41(11):1180–1185CrossRefGoogle Scholar
  17. Ho LK, Chen K, Ho IC, Shen YC, Yen DH, Li FC, Lin YC, Kuo WK, Lou YJ, Yen JC (2008) Adrenomedullin enhances baroreceptor reflex response via cAMP/PKA signaling in nucleus tractus solitarii of rats. Neuropharmacology 55(5):729–736PubMedCrossRefGoogle Scholar
  18. Holwerda DA (1972) A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur J Biochem FEBS 28(3):334–339CrossRefGoogle Scholar
  19. Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA (1995) The amino-terminal portion of pro-brain natriuretic peptide (Pro-BNP) circulates in human plasma. Biochem Biophys Res Commun 214(3):1175–1183PubMedCrossRefGoogle Scholar
  20. Janda S, Swiston J (2010) Diagnostic accuracy of pleural fluid NT-pro-BNP for pleural effusions of cardiac origin: a systematic review and meta-analysis. BMC Pulm Med 20:10:58CrossRefGoogle Scholar
  21. Jarvis SS, Florian JP, Curren MJ, Pawelczyk JA (2010) Sex differences in vasoconstrictor reserve during 70 deg head-up tilt. Exp Physiol 95(1):184–193PubMedCrossRefGoogle Scholar
  22. Johnson BD, van Helmond N, Curry TB, van Buskirk CM, Convertino VA, Joyner MJ (2014) Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses. J Appl Physiol Bethesda Md 1985 117(2):131–141Google Scholar
  23. Kato J, Etoh T, Kitamura K, Eto T (2005) Atrial and brain natriuretic peptides as markers of cardiac load and volume retention in primary aldosteronism. Am J Hypertens 2005 Mar;18(3):354–357PubMedCrossRefGoogle Scholar
  24. Koch G, Schnyder I (2015) Model for characterizing copeptin kinetics and response in healthy subjects [Online]. Accessed 25 Aug 2015
  25. Koshimizu T, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92(4):1813–1864PubMedCrossRefGoogle Scholar
  26. Krishnan B, Patarroyo-Aponte M, Duprez D, Pritzker M, Missov E, DG Benditt (2015) Orthostatic hypotension of unknown cause: unanticipated association with elevated circulating N-terminal brain natriuretic peptide (NT-proBNP). Heart Rhythm 12(6):1287–1294(PubMedCrossRefGoogle Scholar
  27. Laycock JF (2010) Perspectives on vasopressin., NJ: Imperial College Press, London, p 5 ffGoogle Scholar
  28. Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG (1991) Left ventricular pressure-volume and Frank–Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation 84(3):1016–1023PubMedCrossRefGoogle Scholar
  29. Meendering JR, Torgrimson BN, Houghton BL, Halliwill JR, Minson CT (2005) Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress Am J Physiol Heart Circ Physiol, vol. 289, no. 2, pp. H631–H642, AugPubMedCrossRefGoogle Scholar
  30. Mohanty S, Asha G (2015) A novel stress neurohormone copeptin: its potential role in diagnosis and prognosis of various diseases [online]. Accessed 06 Apr 2016
  31. Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119PubMedCrossRefGoogle Scholar
  32. Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, Oya H, Kyotani S, Nakanishi N, Goto Y, Masuda Y, Miyatake K, Kangawa K (2000) Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation. 2000 Feb 8;101(5):498–503PubMedCrossRefGoogle Scholar
  33. Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E (2009) Regulation of aquaporin-2 trafficking. In: Beitz E (eds) Aquaporins. Handbook of experimental pharmacology, vol 190. Springer, Berlin, Heidelberg, pp 133–157CrossRefGoogle Scholar
  34. Nickel CH, Bingisser R, Morgenthaler NG (2012) The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med 10(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Nakao K (2013) Adrenomedullin in cardiovascular disease: a useful biomarker, its pathological roles and therapeutic application. Curr Protein Pept Sci 14(4):256–267PubMedCrossRefGoogle Scholar
  36. Norsk P, Ellegaard P, Videbaek R, Stadeager C, Jessen F, Johansen LB, Kristensen MS, Kamegai M, Warberg J, Christensen NJ (1993) Arterial pulse pressure and vasopressin release in humans during lower body negative pressure. Am J Physiol 264(5 Pt 2):R1024–R1030PubMedGoogle Scholar
  37. Pump B, Gabrielsen A, Christensen NJ, Bie P, Bestle M, Norsk P (1999) Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans. Am J Physiol 277(1 Pt 2):R229–R235PubMedGoogle Scholar
  38. Rademaker MT, Richards AM (2005) Cardiac natriuretic peptides for cardiac health. Clin Sci (Lond) 108(1):23–36CrossRefGoogle Scholar
  39. Ranchin B, Boury-Jamot M, Blanchard G, Dubourg L, Hadj-Aïssa A, Morin D, Durroux T, Cochat P, Bricca G, Verbavatz JM, Geelen G (2010) Familial nephrogenic syndrome of inappropriate antidiuresis: dissociation between aquaporin-2 and vasopressin excretion. J Clin Endocrinol Metab 2010 Sep 95(9):E37–E43PubMedCrossRefGoogle Scholar
  40. Repaske DR, Medlej R, Gultekin EK, Krishnamani MR, Halaby G, Findling JW, Phillips JA (1997) Heterogeneity in clinical manifestation of autosomal dominant neurohypophyseal diabetes insipidus caused by a mutation encoding Ala-1→Val in the signal peptide of the arginine vasopressin/neurophysin II/copeptin precursor. J Clin Endocrinol Metab 82(1):51–56PubMedGoogle Scholar
  41. Rose BD (2000) Clinical physiology of acid-base and electrolyte disorders. 5. Mcgraw-Hill Education Ltd, A. New York, p 190Google Scholar
  42. Rössler A, László Z, Haditsch B, Hinghofer-Szalkay HG (1999) Orthostatic stimuli rapidly change plasma adrenomedullin in humans”. Hypertension. 1999 Nov;34(5):1147–1151PubMedCrossRefGoogle Scholar
  43. Rössler A, Goswami N, Haditsch B, Loeppky JA, Luft FC, Hinghofer-Szalkay H (2011) Volume regulating hormone responses to repeated head-up tilt and lower body negative pressure. Eur J Clin Investig 41(8):863–869CrossRefGoogle Scholar
  44. Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby N, Bankir L, Bichet DG (2014) Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab 99(12):4656–4663PubMedCrossRefGoogle Scholar
  45. Russomano T, May F, Dalmarco G, Baptista RR (2015) A gender comparison of cardiovascular responses to lower body negative pressure exposure. Am J Med Biol Res 3(4):95–101Google Scholar
  46. Schnyder I, Strausz K, Koch G, Walti C, Pfister M, Allolio B, Fenske WK, Christ-Crain M (2015) Physiological area of normality of copeptin in normal-to-hyperosmolar states. Endocr Abstr [Online]. Accessed 14 Jul 2018
  47. Share L, Crofton JT, Ouchi Y (1988) Vasopressin: sexual dimorphism in secretion, cardiovascular actions and hypertension. Am J Med Sci 295(4):314–319PubMedCrossRefGoogle Scholar
  48. Stachenfeld NS, DiPietro L, Palter SF, Nadel ER (1998) Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am J Physiol 274(1 Pt 2):R187–R195PubMedGoogle Scholar
  49. Suzuki T, Yamazaki T, Yazaki Y (2001) The role of the natriuretic peptides in the cardiovascular system. Cardiovasc Res 2001 Aug 15(3):489–494 51(CrossRefGoogle Scholar
  50. Tamma G, Di Mise A, Ranieri M, Svelto M, Pisot R, Bilancio G, Cavallo P, De Santo NG, Cirillo M, Valenti G (2014) A decrease in aquaporin 2 excretion is associated with bed rest induced high calciuria. J Transl Med 12:133PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tamma G, Goswami N, Reichmuth J, de Santo NG, Valenti G (2015) Aquaporins, vasopressin, and aging: current perspectives. Endocrinology 156(3):777–788PubMedCrossRefGoogle Scholar
  52. Trimarco B, de Luca N, de Simone A, Volpe M, Ricciardelli B, Lembo G, Condorelli M (1987) Impaired control of vasopressin release in hypertensive subjects with cardiac hypertrophy. Hypertension 1987 Dec 10(6):595–602PubMedCrossRefGoogle Scholar
  53. Tsuchihashi T, Ueno M, Muratani H, Tomita Y, Takishita S, Fujishima M (1989) Effects of sodium depletion and orthostasis on plasma and urinary vasopressin in normal subjects. Endocrinol Jpn 36(2):237–243PubMedCrossRefGoogle Scholar
  54. Valenti G, Laera A, Pace G, Aceto G, Lospalluti ML, Penza R, Selvaggi FP, Chiozza ML, Svelto M (2000) Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol 11(10):1873–1881PubMedGoogle Scholar
  55. Vokes TJ, Weiss NM, Schreiber J, Gaskill MB, Robertson GL (1988) Osmoregulation of thirst and vasopressin during normal menstrual cycle. Am J Physiol 254:R641–R647 4 Pt 2PubMedGoogle Scholar
  56. Wang YX, Crofton JT, Share L (1997) Sex differences in the cardiovascular and renal actions of vasopressin in conscious rats. Am J Physiol 1997 Jan 272(1 Pt 2):R370–R376PubMedGoogle Scholar
  57. Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol Bethesda Md 1985 92(2):586–594Google Scholar
  58. White DD, Gotshall RW, Tucker A (1996) Women have lower tolerance to lower body negative pressure than men. J Appl Physiol Bethesda Md 1985 80(4):1138–1143Google Scholar
  59. Wong LL, Verbalis JG (2002) Systemic diseases associated with disorders of water homeostasis. Endocrinol Metab Clin N Am 31:121–140CrossRefGoogle Scholar
  60. Wong HK, Cheung TT, Cheung BM (2012) Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc Dis 1(5):1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nandu Goswami
    • 1
  • Johannes Reichmuth
    • 1
  • Annarita Di Mise
    • 2
  • Bianca Brix
    • 1
  • Andreas Roessler
    • 1
  • Mariangela Centrone
    • 2
  • Marianna Ranieri
    • 2
  • Annamaria Russo
    • 2
  • Natale Gaspare De Santo
    • 3
  • Grazia Tamma
    • 2
  • Ferdinando Carlo Sasso
    • 3
    Email author
  • Giovanna Valenti
    • 2
    Email author
  1. 1.Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and InflammationMedical University of GrazGrazAustria
  2. 2.Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of Bari Aldo MoroBariItaly
  3. 3.Department of Advanced Medical and Surgical SciencesUniversità della Campania “L. Vanvitelli”CasertaItaly

Personalised recommendations