Advertisement

Exploring the effect of exercise training on testicular function

  • Bárbara Matos
  • John Howl
  • Rita Ferreira
  • Margarida Fardilha
Invited Review

Abstract

Purpose

The impact of exercise training on testicular function is relatively ill-defined. To gain new insights into this important topic, published data, deriving from both humans and animal studies, were critically analyzed.

Results and conclusions

The effects of exercise on the hypothalamus–pituitary–gonadal axis, influenced by the type, intensity and duration of the exercise program, can be evaluated in terms of total and free testosterone and/or luteinizing hormone and follicle-stimulating hormone serum levels and sperm parameters. High-intensity exercise promotes a common decrease in these parameters, and therefore, negatively impacts upon testicular function. However, published data for moderate-intensity exercise training are inconsistent. Conversely, there is consistent evidence to support the benefits of exercise training to prevent and/or counteract the impairment of testis function caused by aging, obesity and doxorubicin treatment. This positive effect is likely the consequence of decreased oxidative stress and inflammatory status. In the future, it will be important to clarify the molecular mechanisms which explain these reported discrepancies and to establish guidelines for an active lifestyle to promote healthy testicular function.

Keywords

Physical activity Hypothalamus–pituitary–gonadal axis Testosterone Aging Obesity 

Abbreviations

3β-HSD

3β-Hydroxysteroid dehydrogenase

17β-HSD

17β-Hydroxysteroid dehydrogenase

BMI

Body mass index

CAT

Catalase

DNA

Deoxyribonucleic acid

DOX

Doxorubicin

FSH

Follicle-stimulating hormone

G6PDH

Glucose-6-phosphate dehydrogenase

GPx

Glutathione peroxidase

GST

Glutathione S-transferase

HCR

High capacity runners

HPG

Hypothalamus–pituitary–gonadal

HSP70

Heat shock protein 70

IL-1β

Interleukin-1β

IL-10

Interleukin-10

JAK2

Janus kinase 2

LCR

Low intrinsic capacity runners

LDH

Lactate dehydrogenase

LEP

Leptin

LH

Luteinizing hormone

MDA

Malondialdehyde

METs

Metabolic equivalents

NADPH

Nicotinamide adenine dinucleotide phosphate

NF-kB

Nuclear factor kappa B

Nrf2

Nuclear factor erythroid 2p45-related factor 2

ODF-1

Outer dense fiber protein 1

PO2m

Microvascular oxygen partial pressure

SAMP8

Senescence-accelerated prone mouse model

SHBG

Sex hormone binding globulin

SOD

Superoxide dismutase

StAR

Steroidogenic acute regulatory protein

STAT3

Signal transducer and activator of transcription 3

TGF-α

Transforming growth factor alpha

TNF-α

Tumor necrosis factor alpha

TUNEL

Terminal deoxynucleotidyl transferase dUTP nick-end labelling

\(V{{\text{O}}_{{2_{\hbox{max} }}}}\)

Maximal oxygen uptake

Notes

Acknowledgements

We are thankful to the Portuguese Foundation for Science and Technology (FCT), European Union, QREN, FEDER and COMPETE for funding the iBiMED (UID/BIM/04501/2013 and POCI-01-0145-FEDER-007628), QOPNA (UID/QUI/00062/2013) and CIAFEL (UID/DTP/00617/2013) research units, and the research project RUNawayPCa (POCI-01-0145-FEDER-006958 and PTDC/DTP-DES/6077/2014).

Author contributions

BM, JH, RF and MF contributed to the writing of this manuscript. JH contributed to the English editing. All authors approved the final version.

References

  1. Ahtiainen JP, Pakarinen A, Alen M et al (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563.  https://doi.org/10.1007/s00421-003-0833-3 CrossRefPubMedGoogle Scholar
  2. Aune D, Norat T, Leitzmann M et al (2015) Physical activity and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis. Eur J Epidemiol 30:529–542.  https://doi.org/10.1007/s10654-015-0056-z CrossRefPubMedGoogle Scholar
  3. Boyle T, Keegel T, Bull F et al (2012) Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst 104:1548–1561.  https://doi.org/10.1093/jnci/djs354 CrossRefPubMedGoogle Scholar
  4. Chigrinskiy EA, Conway VD (2011) Protective effect of D-ribose against inhibition of rats testes function at excessive exercise. J Stress Physiol Biochem 7:242–249Google Scholar
  5. Chigurupati S, Son TG, Hyun DH et al (2008) Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J Endocrinol 199:333–341.  https://doi.org/10.1677/JOE-08-0306 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Corona G, Rastrelli G, Monami M et al (2011) Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol 165:687–701.  https://doi.org/10.1530/EJE-11-0447 CrossRefPubMedGoogle Scholar
  7. Coussens M, Maresh JG, Yanagimachi R et al (2008) Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One 3:1–8.  https://doi.org/10.1371/journal.pone.0001571 CrossRefGoogle Scholar
  8. Dominguez JM, Davis RT, McCullough DJ et al (2011) Aging and exercise training reduce testes microvascular PO2 and alter vasoconstrictor responsiveness in testicular arterioles. Am J Physiol 301:R801–R810.  https://doi.org/10.1152/ajpregu.00203.2011 CrossRefGoogle Scholar
  9. Feng HL, Sandlow JI, Sparks AET (2001) Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril 76:1136–1139.  https://doi.org/10.1016/S0015-0282(01)02892-8 CrossRefPubMedGoogle Scholar
  10. Gaskins AJ, Mendiola J, Afeiche M et al (2015) Physical activity and television watching in relation to semen quality in young men. Br J Sports Med 49:265–270.  https://doi.org/10.1136/bjsports-2012-091644 CrossRefPubMedGoogle Scholar
  11. Grandys M, Majerczak J, Duda K et al (2009) Endurance training of moderate intensity increases testosterone concentration in young, healthy men. Int J Sports Med 30:489–495.  https://doi.org/10.1055/s-0029-1202340 CrossRefPubMedGoogle Scholar
  12. Hakonsen L, Thulstrup A, Aggerholm A et al (2011) Does weight loss improve semen quality and reproductive hormones results from a cohort of severely obese men. Reprod Health 8:1–8.  https://doi.org/10.1186/1742-4755-8-24 CrossRefGoogle Scholar
  13. Jana K, Samanta PK, Manna I et al (2008) Protective effect of sodium selenite and zinc sulfate on intensive swimming-induced testicular gamatogenic and steroidogenic disorders in mature male rats. Appl Physiol Nutr Metab 33:903–914.  https://doi.org/10.1139/H08-065 CrossRefPubMedGoogle Scholar
  14. Joseph AM, Nguyen LMD, Welter AE et al (2014) Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 15:517–534.  https://doi.org/10.1007/s10522-014-9526-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. Koeva Y, Delchev S, Georgieva K, Atanassova P (2005) Heat Shock protein-70 expression in testis following endurance training of rats. Proc Balk Sci Conf Biol Plovdiv 1:288–294Google Scholar
  16. Köhn FM (2006) Testosterone and body functions. Aging Male 9:183–188.  https://doi.org/10.1080/13685530601060396 CrossRefPubMedGoogle Scholar
  17. Kort HI, Massey JB, Elsner CW et al (2006) Impact of body mass index values on sperm quantity and quality. J Androl 27:450–452.  https://doi.org/10.2164/jandrol.05124 CrossRefPubMedGoogle Scholar
  18. Lowe BD, Schrader SM, Breitenstein MJ (2004) Effect of bicycle saddle designs on the pressure to perineum of the bicyclist. Med Sci Sports Exerc 36:1055–1062.  https://doi.org/10.1249/01.MSS.0000128248.40501.73 CrossRefPubMedGoogle Scholar
  19. Luo L, Chen H, Trush MA et al (2006) Aging and the brown Norway rat leydig cell antioxidant defense system. J Androl 27:240–247.  https://doi.org/10.2164/jandrol.05075 CrossRefPubMedGoogle Scholar
  20. Magalhães J, Ascensão A, Padrão AI et al (2017) Can exercise training counteract doxorubicin-induced oxidative damage of testis proteome? Toxicol Lett 280:57–69.  https://doi.org/10.1016/j.toxlet.2017.08.010 CrossRefPubMedGoogle Scholar
  21. Maleki BH, Tartibian B (2017) High-intensity exercise training for improving reproductive function in infertile patients: a randomized controlled trial. J Obstet Gynaecol Can 39:545–558.  https://doi.org/10.1016/j.jogc.2017.03.097 CrossRefPubMedGoogle Scholar
  22. Maleki BH, Tartibian B, Hajizadeh Maleki B et al (2017) Moderate aerobic exercise training for improving reproductive function in infertile patients: a randomized controlled trial. Cytokine 92:55–67.  https://doi.org/10.1016/j.cyto.2017.01.007 CrossRefGoogle Scholar
  23. Manna I, Jana K, Samanta PK (2003) Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: a correlative approach to oxidative stress. Acta Physiol Scand 178:33–40.  https://doi.org/10.1046/j.1365-201X.2003.01095.x CrossRefPubMedGoogle Scholar
  24. Manna I, Jana K, Samanta PK (2004) Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian J Exp Biol 42:816–822PubMedGoogle Scholar
  25. Odet F, Duan C, Willis WD et al (2008) Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility1. Biol Reprod 79:26–34.  https://doi.org/10.1095/biolreprod.108.068353 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Orwoll E, Lambert LC, Marshall LM et al (2006) Testosterone and estradiol among older men. J Clin Endocrinol Metab 91:1336–1344.  https://doi.org/10.1210/jc.2005-1830 CrossRefPubMedGoogle Scholar
  27. Priskorn L, Jensen TK, Bang AK et al (2016) Is sedentary lifestyle associated with testicular function? A cross-sectional study of 1210 men. Am J Epidemiol 184:284–294.  https://doi.org/10.1093/aje/kwv338 CrossRefPubMedGoogle Scholar
  28. Rodano R, Squadrone R, Sacchi M, Marzegan A (2002) Saddle pressure distribution in cycling: comparison among saddles of different design and materials. ISBS Conf Proc Arch 1:606–609Google Scholar
  29. Safarinejad MR, Azma K, Kolahi AA (2009) The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus–pituitary–testis axis, and semen quality: a randomized controlled study. J Endocrinol 200:259–271.  https://doi.org/10.1677/JOE-08-0477 CrossRefPubMedGoogle Scholar
  30. Sharpe R (1974) Environmental causes of testicular dysfunction. In: Winters S, Huhtaniemi I (eds) Male hypogonadism, vol 26. Humana Press, Cham, pp 281–304.  https://doi.org/10.1007/978-1-59259-727-7 CrossRefGoogle Scholar
  31. Stokes VJ, Anderson RA, George JT (2015) How does obesity affect fertility in men-and what are the treatment options. Clin Endocrinol (Oxf) 25:633–638.  https://doi.org/10.1111/cen.12591 CrossRefGoogle Scholar
  32. Swift DL, Johannsen NM, Lavie CJ et al (2014) The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis 56:441–447.  https://doi.org/10.1016/j.pcad.2013.09.012 CrossRefPubMedGoogle Scholar
  33. Torma F, Koltai E, Nagy E et al (2014) Exercise increases markers of spermatogenesis in rats selectively bred for low running capacity. PLoS One 9:1–11.  https://doi.org/10.1371/journal.pone.0114075 CrossRefGoogle Scholar
  34. Traish AM, Saad F, Guay A (2009) The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl 30:23–32.  https://doi.org/10.2164/jandrol.108.005751 CrossRefPubMedGoogle Scholar
  35. Vaamonde D, Da Silva-Grigoletto ME, García-Manso JM et al (2012) Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Physiol 112:3267–3273.  https://doi.org/10.1007/s00421-011-2304-6 CrossRefPubMedGoogle Scholar
  36. Vasankari V, Husu P, Vähä-Ypyä H et al (2017) Association of objectively measured sedentary behaviour and physical activity with cardiovascular disease risk. Eur J Prev Cardiol 24:1311–1318.  https://doi.org/10.1177/2047487317711048 CrossRefPubMedGoogle Scholar
  37. Wang X, Shen CL, Dyson MT et al (2005) Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology 146:4202–4208.  https://doi.org/10.1210/en.2005-0298 CrossRefPubMedGoogle Scholar
  38. Wise LA, Cramer DW, Hornstein MD et al (2011) Physical activity and semen quality among men attending an infertility clinic. Fertil Steril 95:1025–1030.  https://doi.org/10.1016/j.fertnstert.2010.11.006 CrossRefPubMedGoogle Scholar
  39. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137:869–882.  https://doi.org/10.1007/s10549-012-2396-7 CrossRefPubMedGoogle Scholar
  40. Xu Q, Park Y, Huang X et al (2010) Physical activities and future risk of Parkinson disease. Neurology 75:341–348.  https://doi.org/10.1212/WNL.0b013e3181ea1597 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yang K, Meinhardt A, Zhang B et al (2012) The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol Cell Biol 32:216–225.  https://doi.org/10.1128/MCB.06158-11 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yeh Y, Liu T, Wang L et al (2009) A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br J Pharmacol 156:48–61.  https://doi.org/10.1111/j.1476-5381.2008.00042.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yi X, Gao H, Chen D et al (2017) Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice. Am J Physiol Regul Integr Comp Physiol 312:R501–R510.  https://doi.org/10.1152/ajpregu.00405.2016 CrossRefPubMedGoogle Scholar
  44. Zhao X, Bian Y, Sun Y et al (2013) Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp Gerontol 48:869–880.  https://doi.org/10.1016/j.exger.2013.05.063 CrossRefPubMedGoogle Scholar
  45. Zmuda JM, Thompson PD, Winters SJ (1996) Exercise increases serum testosterone and sex hormone—binding globulin levels in older men. Metabolism 45:935–939.  https://doi.org/10.1016/S0026-0495(96)90258-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bárbara Matos
    • 1
    • 2
  • John Howl
    • 3
  • Rita Ferreira
    • 1
  • Margarida Fardilha
    • 2
  1. 1.QOPNA, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.Signal Transduction Laboratory, iBiMED, Department of Medical SciencesUniversity of AveiroAveiroPortugal
  3. 3.Molecular Pharmacology Group, Research Institute in Healthcare ScienceUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations