European Journal of Applied Physiology

, Volume 118, Issue 8, pp 1725–1736 | Cite as

Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans

  • Jeam Marcel Geremia
  • Bruno Manfredini Baroni
  • Maarten Frank Bobbert
  • Rodrigo Rico Bini
  • Fabio Juner Lanferdini
  • Marco Aurélio Vaz
Original Article



To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program.


Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force–elongation and stress–strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks.


At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young’s modulus (87% increase), and at post-8 in CSA (15% increase).


Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.


Human tendon stiffness Myotendinous junction Ultrasound Eccentric training 



Analysis of variance


Evaluation before control period


Cross-sectional area


Surface electromyography


Intraclass correlation coefficient


Myotendinous junction


Maximal voluntary isometric contraction


After 12 high loading training weeks


After 4 high loading training weeks


After 8 high loading training weeks


After a 4-week control period


Slope of the force–elongation curve obtained from 50 to 100% of peak force of the weakest participant


Slope of the force–elongation curve obtained from 50 to 100% of maximal isometric voluntary force


Tendon length






Young’s Modulus


Slope of the stress–strain curve obtained from 50 to 100% of peak force of the weakest participant


Slope of the stress–strain curve obtained from 50 to 100% of maximal isometric voluntary stress



The authors would like to acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa Ciências Sem Fronteiras (CSF) and Financiadora de Estudos e Projetos (FINEP) from Brazil for financial support, and Amanda de Lima and Mayra Casa Nova for technical support.

Author contributions

Study conception and design: JMG, MAV, BMB, data acquisition: JMG, FJL. Analysis and interpretation of data: JMG, RRB, FJL, BMB, MFB, MAV. Drafting of manuscript: JMG, BMB, RRB, FJL, MFB, MAV. Critical revision: JMG, BMB, RRB, FJL, MFB, MAV.

Compliance with ethical standards

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.


  1. Alfredson H, Pietilä T, Jonsson P, Lorentzon R (1998) Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med 26(3):360–366CrossRefGoogle Scholar
  2. Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210(Pt 15):2743–2753. CrossRefPubMedGoogle Scholar
  3. Arampatzis A, Peper A, Bierbaum S, Albracht K (2010) Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech 43(16):3073–3079. CrossRefPubMedGoogle Scholar
  4. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P (2002) Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 20(5):947–952. CrossRefPubMedGoogle Scholar
  5. Arnoczky SP, Tian T, Lavagnino M, Gardner K (2004) Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res 22(2):328–333. CrossRefPubMedGoogle Scholar
  6. Arya S, Kulig K (2010) Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol (1985) 108(3):670–675. CrossRefGoogle Scholar
  7. Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA (2013a) Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve 48(4):498–506. CrossRefPubMedGoogle Scholar
  8. Baroni BM, Rodrigues R, Franke RA, Geremia JM, Rassier DE, Vaz MA (2013b) Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med 34(10):904–911. CrossRefPubMedGoogle Scholar
  9. Baroni BM, Pinto RS, Herzog W, Vaz MA (2015) Eccentric resistance training of the knee extensor muscle: training programs and neuromuscular adaptations. Isokinet Exerc Sci 23:183–198CrossRefGoogle Scholar
  10. Bohm S, Mersmann F, Tettke M, Kraft M, Arampatzis A (2014) Human Achilles tendon plasticity in response to cyclic strain: effect of rate and duration. J Exp Biol 217(Pt 22):4010–4017. CrossRefPubMedGoogle Scholar
  11. Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1(1):7. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bohm S, Mersmann F, Schroll A, Makitalo N, Arampatzis A (2016) Insufficient accuracy of the ultrasound-based determination of Achilles tendon cross-sectional area. J Biomech 49(13):2932–2937. CrossRefPubMedGoogle Scholar
  13. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Inc, MahwahGoogle Scholar
  14. Couppe C, Svensson RB, Silbernagel KG, Langberg H, Magnusson SP (2015) Eccentric or concentric exercises for the treatment of tendinopathies? J Orthop Sports Phys Ther 45(11):853–863. CrossRefPubMedGoogle Scholar
  15. de Leva P (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230CrossRefGoogle Scholar
  16. Duclay J, Martin A, Duclay A, Cometti G, Pousson M (2009) Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve 39(6):819–827. CrossRefPubMedGoogle Scholar
  17. Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36(1):37–43CrossRefGoogle Scholar
  18. Epro G, Mierau A, Doerner J, Luetkens JA, Scheef L, Kukuk GM, Boecker H, Maganaris CN, Bruggemann GP, Karamanidis K (2017) The Achilles tendon is mechanosensitive in older adults: adaptations following 14 weeks versus 1.5 years of cyclic strain exercise. J Exp Biol 220(Pt 6):1008–1018. CrossRefPubMedGoogle Scholar
  19. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191CrossRefGoogle Scholar
  20. Fredberg U, Stengaard-Pedersen K (2008) Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports 18(1):3–15. CrossRefPubMedGoogle Scholar
  21. Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos Fde A, Lupion Rde O, Frasson VB, Vaz MA (2015) The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech (Bristol Avon) 30(5):485–492. CrossRefGoogle Scholar
  22. Goode AP, Reiman MP, Harris L, DeLisa L, Kauffman A, Beltramo D, Poole C, Ledbetter L, Taylor AB (2015) Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med 49(6):349–356. CrossRefPubMedGoogle Scholar
  23. Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Hakkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89(1):42–52. CrossRefPubMedGoogle Scholar
  24. Hansen KA, Weiss JA, Barton JK (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124(1):72–77CrossRefGoogle Scholar
  25. Hansen P, Aagaard P, Kjaer M, Larsson B, Magnusson SP (2003) Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area. J Appl Physiol 95(6):2375–2380. CrossRefPubMedGoogle Scholar
  26. Herzog W, Powers K, Johnston K, Duvall M (2015) A new paradigm for muscle contraction. Front Physiol 6:174. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15CrossRefGoogle Scholar
  28. Izquierdo M, Hakkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga EM (2001) Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol (1985) 90(4):1497–1507. CrossRefGoogle Scholar
  29. Kastelic J, Palley I, Baer E (1980) A structural mechanical model for tendon crimping. J Biomech 13(10):887–893CrossRefGoogle Scholar
  30. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84(2):649–698. CrossRefPubMedGoogle Scholar
  31. Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19(4):500–510. CrossRefPubMedGoogle Scholar
  32. Kubo K, Kanehisa H, Miyatani M, Tachi M, Fukunaga T (2003) Effect of low-load resistance training on the tendon properties in middle-aged and elderly women. Acta Physiol Scand 178(1):25–32. CrossRefPubMedGoogle Scholar
  33. Kubo K, Ikebukuro T, Yata H, Tsunoda N, Kanehisa H (2010) Time course of changes in muscle and tendon properties during strength training and detraining. J Strength Cond Res 24(2):322–331. CrossRefPubMedGoogle Scholar
  34. Kubo K, Ikebukuro T, Maki A, Yata H, Tsunoda N (2012) Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. Eur J Appl Physiol 112(7):2679–2691. CrossRefPubMedGoogle Scholar
  35. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefGoogle Scholar
  36. Lantto I, Heikkinen J, Flinkkila T, Ohtonen P, Leppilahti J (2015) Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports 25(1):e133-138. CrossRefGoogle Scholar
  37. LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL (2003) Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther 33(10):557–571. CrossRefPubMedGoogle Scholar
  38. Lavagnino M, Arnoczky SP, Tian T, Vaupel Z (2003) Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect Tissue Res 44(3–4):181–187CrossRefGoogle Scholar
  39. Mademli L, Arampatzis A, Morey-Klapsing G, Brüggemann GP (2004) Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion. J Electromyogr Kinesiol 14(5):591–597. CrossRefPubMedGoogle Scholar
  40. Magnusson SP, Aagaard P, Dyhre-Poulsen P, Kjaer M (2001) Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 531(Pt 1):277–288CrossRefGoogle Scholar
  41. Magnusson SP, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, Kjaer M (2003) Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand 177(2):185–195. CrossRefPubMedGoogle Scholar
  42. Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586(1):71–81. CrossRefPubMedGoogle Scholar
  43. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6(5):262–268. CrossRefPubMedGoogle Scholar
  44. Mahieu NN, McNair P, Cools A, D’Haen C, Vandermeulen K, Witvrouw E (2008) Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc 40(1):117–123. CrossRefPubMedGoogle Scholar
  45. Malliaras P, Kamal B, Nowell A, Farley T, Dhamu H, Simpson V, Morrissey D, Langberg H, Maffulli N, Reeves ND (2013) Patellar tendon adaptation in relation to load-intensity and contraction type. J Biomech 46(11):1893–1899. CrossRefPubMedGoogle Scholar
  46. Manal K, Cowder JD, Buchanan TS (2010) A hybrid method for computing achilles tendon moment arm using ultrasound and motion analysis. J Appl Biomech 26(2):224–228CrossRefGoogle Scholar
  47. Mersmann F, Bohm S, Arampatzis A (2017) Imbalances in the development of muscle and tendon as risk factor for Tendinopathies in youth athletes: a review of current evidence and concepts of prevention. Front Physiol 8:987. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130PubMedGoogle Scholar
  49. Morrissey D, Roskilly A, Twycross-Lewis R, Isinkaye T, Screen H, Woledge R, Bader D (2011) The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness. Clin Rehabil 25(3):238–247. CrossRefPubMedGoogle Scholar
  50. Mouraux D, Stallenberg B, Dugailly PM, Brassinne E (2000) The effect of submaximal eccentric isokinetic training on strength and cross sectional area of the human Achilles tendon. Isokinet Exerc Sci 8:161–167CrossRefGoogle Scholar
  51. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T (2001) Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol (1985) 90(5):1671–1678. CrossRefGoogle Scholar
  52. Rhea MR (2004) Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res 18(4):918–920PubMedGoogle Scholar
  53. Schatzmann L, Brunner P, Staubli HU (1998) Effect of cyclic preconditioning on the tensile properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S56-61. CrossRefPubMedGoogle Scholar
  54. Waugh CM, Blazevich AJ, Fath F, Korff T (2012) Age-related changes in mechanical properties of the Achilles tendon. J Anat 220(2):144–155. CrossRefPubMedGoogle Scholar
  55. Wiesinger HP, Kosters A, Muller E, Seynnes OR (2015) Effects of increased loading on in vivo tendon properties: a systematic review. Med Sci Sports Exerc 47(9):1885–1895. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wren TA, Yerby SA, Beaupre GS, Carter DR (2001) Mechanical properties of the human achilles tendon. Clin Biomech (Bristol Avon) 16(3):245–251CrossRefGoogle Scholar
  57. Zhao H, Ren Y, Wu YN, Liu SQ, Zhang LQ (2009) Ultrasonic evaluations of Achilles tendon mechanical properties poststroke. J Appl Physiol (1985) 106(3):843–849. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratório de Biomecânica (LABIOMEC), Centro de Educação Física e DesportosUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e DançaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de FisioterapiaUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  4. 4.Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
  5. 5.La Trobe Rural Health SchoolLa Trobe UniversityBendigoAustralia

Personalised recommendations