Skip to main content
Log in

Exercise-induced fatigue in young people: advances and future perspectives

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

In recent decades, the interest for exercise-induced fatigue in youth has substantially increased, and the effects of growth on the peripheral (muscular) and central (neural) mechanisms underpinning differences in neuromuscular fatigue between healthy children and adults have been described more extensively. The purpose of this review is to retrieve, report, and analyse the findings of studies comparing neuromuscular fatigue between children and adults. Objective measures of the evaluation of the physiological mechanisms are discussed.

Method

Major databases (PubMed, Ovid, Scopus and Web of Science) were systematically searched and limited to English language from inception to September 2017.

Result

Collectively, the analyzed studies indicate that children experience less muscular and potentially more neural fatigue than adults. However, there are still many unknown aspects of fatigue regarding neural (supraspinal and spinal) and peripheral mechanisms that should be more thoroughly examined in children.

Conclusion

Suitable methods, such as transcranial magnetic stimulation, transcranial electrical stimulation, functional magnetic resonance imaging, near-infrared spectroscopy, tendon vibration, H-reflex, and ultrasound are recommended in the research field of fatigue in youth. By designing studies that test the fatigue effects in movements that replicate daily activities, new knowledge will be acquired. The linkage and interaction between physiological, cognitive, and psychological aspects of human performance remain to be resolved in young people. This can only be successful if research is based on a foundation of basic research focused on the mechanisms of fatigue while measuring all three above aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

E–C:

Excitation–contraction

MRI:

Magnetic resonance imaging

MTU:

Muscle–tendon unit

MVC:

Maximum voluntary contraction

NIRS:

Near-infrared spectroscopy

PCr:

Phosphocreatine

PICs:

Persistent inward currents

sEMG:

Surface electromyography

TMS:

Transcranial magnetic stimulation

VA:

Voluntary activation

References

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Dempsey JA (2008) The concept of peripheral locomotor muscle fatigue as a regulated variable. J Physiol 7:2029–2030

    Article  CAS  Google Scholar 

  • Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2011) Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol 589:5299–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armatas V, Bassa E, Patikas D, Kitsas I, Zangelidis G, Kotzamanidis C (2010) Neuromuscular differences between men and prepubescent boys during a peak isometric knee extension intermittent fatigue test. Pediatr Exerc Sci 22:205–217

    Article  PubMed  Google Scholar 

  • Asmussen E (1979) Muscle fatigue. Med Sci Sports 11:313–321

    CAS  PubMed  Google Scholar 

  • Belanger AY, McComas AJ (1989) Contractile properties of human skeletal muscle in childhood and adolescence. Eur J Appl Physiol 58:563–567

    Article  CAS  Google Scholar 

  • Berg A, Keul J (1988) Biochemical changes during exercise in children. In: Malina RM (ed) Young athletes/biological, psychological and educational perspectives. Human Kinetics, Champaign, pp 61–77

    Google Scholar 

  • Bigland-Ritchie BR, Furbush FH, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61:421–429

    Article  CAS  PubMed  Google Scholar 

  • Bottaro M, Brown LE, Celes R, Martorelli S, Carregaro R, de Brito Vidal JC (2011) Effect of rest interval on neuromuscular and metabolic responses between children and adolescents. Pediatr Exerc Sci 23:311–321

    Article  PubMed  Google Scholar 

  • Callewaert M, Boone J, Celie B, De Clercq D, Bourgois J (2013) Quadriceps muscle fatigue in trained and untrained boys. Int J Sports Med 34:14–20

    CAS  PubMed  Google Scholar 

  • Chen TC, Chen HL, Liu YC, Nosaka K (2014) Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. Eur J Appl Physiol 114:1183–1195

    Article  PubMed  Google Scholar 

  • Chin ER, Balnave CD, Allen DG (1997) Role of intracellular calcium and metabolites in low-frequency fatigue of mouse skeletal muscle. Am J Physiol 272(2 Pt 1):C550–559

    Article  CAS  PubMed  Google Scholar 

  • Crone C, Nielsen JB (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res 78:28–32

    Article  CAS  PubMed  Google Scholar 

  • Crone C, Hultborn H, Jespersen B, Nielsen JB (1987) Reciprocal Ia inhibition between ankle flexors and extensors in man. J Physiol 389:163–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Ste Croix MBA, Deighan MA, Ratel S, Armstrong N (2009) Age- and sex-associated differences in isokinetic knee muscle endurance between young children and adults. Appl Physiol Nutr Metab 34:725–731

    Article  PubMed  Google Scholar 

  • De Luca CJ, Chang SS, Roy SH, Kline JC, Nawab SH (2015) Decomposition of surface EMG signals from cyclic dynamic contractions. J Neurophysiol 113:1941–1951

    Article  PubMed  Google Scholar 

  • Dipla K, Tsirini T, Zafeiridis A, Manou V, Dalamitros A, Kellis E, Kellis S (2009) Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol 106:645–653

    Article  PubMed  Google Scholar 

  • Enoka RM (1995) Mechanisms of muscle fatigue: central factors and task dependency. J Electromyogr Kinesiol 5:141–149

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2016) translating fatigue to human performance. Med Sci Sports Exerc 48:2228–2238

    Article  PubMed  PubMed Central  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  CAS  PubMed  Google Scholar 

  • Faigenbaum AD, Ratamess NA, McFarland J, Kaczmarek J, Coraggio MJ, Kang J, Hoffman JR (2008) Effect of rest interval length on bench press performance in boys, teens, and men. Pediatr Exerc Sci 20:457–469

    Article  PubMed  Google Scholar 

  • Falk B, Dotan R (2006) Child–adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev 34:107–112

    Article  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    Article  CAS  PubMed  Google Scholar 

  • Fleischman A, Makimura H, Stanley TL, McCarthy MA, Kron M, Sun N, Chuzi S, Hrovat MI, Systrom DM, Grinspoon SK (2010) Skeletal muscle phosphocreatine recovery after submaximal exercise in children and young and middle-aged adults. J Clin Endocrinol Metab 95:69–74

    Article  Google Scholar 

  • Folland JP, Williams AG (2007) The adaptations to strength training increased strength. Sport Med 37:145–168

    Article  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, Petersen NT, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 521:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Vicencio S, Martin V, Kluka V, Cardenoux C, Jegu AG, Fourot AV, Coudeyre E, Ratel S (2015) Obesity-related differences in neuromuscular fatigue in adolescent girls. Eur J Appl Physiol 115:2421–2432

    Article  PubMed  Google Scholar 

  • Glenmark BB, Hedberg GG, Kaijser LL, Jansson EE (1994) Muscle strength from adolescence to adulthood-relationship to muscle fibre types. Eur J Appl Physiol 68:9–19

    Article  CAS  Google Scholar 

  • Gorianovas G, Skurvydas A, Streckis V, Brazaitis M, Kamandulis S, McHugh MP (2013) Repeated bout effect was more expressed in young adult males than in elderly males and boys. Biomed Res Int 2013:218970

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosset J-F, Mora I, Lambertz D, Pérot C (2008) Voluntary activation of the triceps surae in prepubertal children. J Electromyogr Kinesiol 18:455–465

    Article  PubMed  Google Scholar 

  • Halin R, Germain P, Bercier S, Kapitaniak B, Buttelli O (2003) Neuromuscular response of young boys versus men during sustained maximal contraction. Med Sci Sports Exerc 35:1042–1048

    Article  PubMed  Google Scholar 

  • Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173

    Article  CAS  PubMed  Google Scholar 

  • Hatzikotoulas K, Patikas D, Bassa E, Hadjileontiadis L, Koutedakis Y, Kotzamanidis C (2009) Submaximal fatigue and recovery in boys and men. Int J Sports Med 30:741–746

    Article  CAS  PubMed  Google Scholar 

  • Hatzikotoulas K, Patikas D, Ratel S, Bassa E, Kotzamanidis C (2014) Central and peripheral fatigability in boys and men during maximal contraction. Med Sci Sports Exerc 46:1326–1333

    Article  PubMed  Google Scholar 

  • Hebestreit H, Mimura K, Bar-Or O (1993) Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol 74:2875–2880

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31:135–156

    Article  CAS  Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    Article  CAS  PubMed  Google Scholar 

  • Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M (1987) Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J Physiol 389:757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SK, Critchlow A, Shin I-S, Enoka RM (2004) Fatigability of the elbow flexor muscles for a sustained submaximal contraction is similar in men and women matched for strength. J Appl Physiol 96:195–202

    Article  PubMed  Google Scholar 

  • Kanehisa H, Okuyama H, Ikegawa S, Fukunaga T (1995) Fatigability during repetitive maximal knee extensions in 14-year-old boys. Eur J Appl Physiol 72:170–174

    Article  CAS  Google Scholar 

  • Kappenstein J, Ferrauti A, Runkel B, Fernandez-Fernandez J, Müller K, Zange J (2013) Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults. Eur J Appl Physiol 113:2769–2779

    Article  CAS  PubMed  Google Scholar 

  • Kinugasa R, Akima H, Ota A, Ohta A, Sugiura K, Kuno SY (2004) Short-term creatine supplementation does not improve muscle activation or sprint performance in humans. Eur J Appl Physiol 91:230–237

    Article  CAS  PubMed  Google Scholar 

  • Kluger BM, Krupp LB, Enoka RM (2013) Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80:409–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Kluka V, Martin V, Vicencio SG, Jegu AG, Cardenoux C, Morio C, Coudeyre E, Ratel S (2015) Effect of muscle length on voluntary activation level in children and adults. Med Sci Sports Exerc 47:718–724

    Article  PubMed  Google Scholar 

  • Kluka V, Martin V, Vicencio SG, Giustiniani M, Morel C, Morio C, Coudeyre E, Ratel S (2016) Effect of muscle length on voluntary activation of the plantar flexors in boys and men. Eur J Appl Physiol 116:1043–1051

    Article  PubMed  Google Scholar 

  • Lazaridis S, Patikas DA, Bassa E, Tsatalas T, Hatzikotoulas K, Ftikas C, Kotzamanidis C (2018) The acute effects of an intense stretch–shortening cycle fatigue protocol on the neuromechanical parameters of lower limbs in men and prepubescent boys. J Sports Sci 36:131–139

    Article  PubMed  Google Scholar 

  • Lexell J, Sjöström M, Nordlund AS, Taylor CC (1992) Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 15:404–409

    Article  CAS  PubMed  Google Scholar 

  • Mademli L, Arampatzis A (2005) Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol 94:611–617

    Article  PubMed  Google Scholar 

  • Martin V, Kluka V, Garcia Vicencio S, Maso F, Ratel S (2015) Children have a reduced maximal voluntary activation level of the adductor pollicis muscle compared to adults. Eur J Appl Physiol 115:1485–1491

    Article  CAS  PubMed  Google Scholar 

  • McNeil CJ, Murray BJ, Rice CL (2006) Differential changes in muscle oxygenation between voluntary and stimulated isometric fatigue of human dorsiflexors. J Appl Physiol 100:890–895

    Article  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moalla W, Merzouk A, Costes F, Tabka Z, Ahmaidi S (2006) Muscle oxygenation and EMG activity during isometric exercise in children. J Sports Sci 24:1195–1201

    Article  PubMed  Google Scholar 

  • Moalla W, Elloumi M, Chamari K, Dupont G, Maingourd Y, Tabka Z, Ahmaidi S (2012) Training effects on peripheral muscle oxygenation and performance in children with congenital heart diseases. Appl Physiol Nutr Metab 57:1–10

    Google Scholar 

  • Mosso A (1904) Fatigue. G.P. Putnam's Sons, New York

  • Murphy JR, Button DC, Chaouachi A, Behm DG (2014) Prepubescent males are less susceptible to neuromuscular fatigue following resistnace exercise. Eur J Appl Physiol 114:825–835

    Article  PubMed  Google Scholar 

  • O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) The effects of agonist and antagonist muscle activation on the knee extension moment–angle relationship in adults and children. Eur J Appl Physiol 106:849–856

    Article  PubMed  CAS  Google Scholar 

  • Paraschos I, Hassani A, Bassa E, Hatzikotoulas K, Patikas D, Kotzamanidis C (2007) Fatigue differences between adults and prepubertal males. Int J Sports Med 28:958–963

    Article  CAS  PubMed  Google Scholar 

  • Patikas D, Kansizoglou A, Koutlianos N, Williams CA, Hatzikotoulas K, Bassa E, Kotzamanidis C (2013) Fatigue and recovery in children and adults during sustained contractions at two different submaximal intensities. Appl Physiol Nutr Metab 38:953–959

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Bussel B (1975) Evidence for recurrent inhibition by motoneurons in human subjects. Brain Res 88:105–108

    Article  CAS  PubMed  Google Scholar 

  • Ploutz-Snyder LL, Tesch PA, Biro RL, Dudley GA (1994) Effect of resistance training on muscle use during exercise. J Appl Physiol 76:1675–1681

    Article  Google Scholar 

  • Psek JA, Cafarelli E (1993) Behavior of coactive muscles during fatigue. J Appl Physiol 74:170–175

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S (2007) Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 39:268–274

    Article  PubMed  Google Scholar 

  • Ratel S, Blazevich AJ (2017) Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med 47:1477–1485

    Article  PubMed  Google Scholar 

  • Ratel S, Bedu M, Hennegrave A, Doré E, Duché P (2002a) Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med 23:397–402

    Article  CAS  PubMed  Google Scholar 

  • Ratel S, Duche P, Hennegrave A, Van Praagh E, Bedu M (2002b) Acid–base balance during repeated cycling sprints in boys and men. J Appl Physiol 92:479–485

    Article  CAS  PubMed  Google Scholar 

  • Ratel S, Williams CA, Oliver J, Armstrong N (2004) Effects of age and mode of exercise on power output profiles during repeated sprints. Eur J Appl Physiol 92:204–210

    Article  PubMed  Google Scholar 

  • Ratel S, Duché P, Williams CA (2006a) Muscle fatigue during high-intensity exercise in children. Sports Med 6:1031–1065

    Article  Google Scholar 

  • Ratel S, Williams CA, Oliver J, Armstrong N (2006b) Effects of age and recovery duration on performance during multiple treadmill sprints. Int J Sports Med 26:1–8

    Article  Google Scholar 

  • Ratel S, Tonson A, Le Fur Y, Cozzone P, Bendahan D (2008) Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P-MRS study. Appl Physiol Nutr Metab 33:720–727

    Article  CAS  PubMed  Google Scholar 

  • Ratel S, Kluka V, Vicencio SG, Jegu AG, Cardenoux C, Morio C, Coudeyre E, Martin V (2015) Insights into the mechanisms of neuromuscular fatigue in boys and men. Med Sci Sports Exerc 47:2319–2328

    Article  CAS  PubMed  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sport Med 34:253–267

    Article  Google Scholar 

  • Smith KJ, Billaut F (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 109:989–999

    Article  PubMed  Google Scholar 

  • Streckis V, Skurvydas A, Ratkevicius A (2007) Children are more susceptible to central fatigue than adults. Muscle Nerve 36:357–363

    Article  PubMed  Google Scholar 

  • Taylor JL, Butler JE, Allen GM, Gandevia SC (1996) Changes in motor cortical excitability during human muscle fatigue. J Physiol 490:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DJ, Kemp GJ, Thompson CH, Radda GK (1997) Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 174:321–324

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Butler JE, Gandevia SC (2000) Changes in muscle afferents, motoneurons and motor drive during muscle fatigue. Eur J Appl Physiol 83:106–115

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    Article  CAS  PubMed  Google Scholar 

  • Tonson A, Ratel S, Le Fur Y, Vilmen C, Cozzone PJ, Bendahan D (2010) Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis. J Appl Physiol 109:1769–1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker KJ, Tuncer M, Türker KS (2005) A review of the H-reflex and M-wave in the human triceps surae. Hum Mov Sci 24:667–688

    Article  PubMed  Google Scholar 

  • Waugh CM, Blazevich AJ, Fath F, Korff T (2012) Age-related changes in mechanical properties of the Achilles tendon. J Anat 220:144–155

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Med 261:C195–C209

    CAS  Google Scholar 

  • Williams CA, Ratel S (2009) Human muscle fatigue. Routledge, Taylor & Francis Group, London and New York

    Book  Google Scholar 

  • Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S (2005) Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc 37:505–512

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DP, CW, and SR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sébastien Ratel.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. This work is known to and agreed by the co-authors identified on the manuscript’s title page.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patikas, D.A., Williams, C.A. & Ratel, S. Exercise-induced fatigue in young people: advances and future perspectives. Eur J Appl Physiol 118, 899–910 (2018). https://doi.org/10.1007/s00421-018-3823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3823-1

Keywords

Navigation