Advertisement

European Journal of Applied Physiology

, Volume 118, Issue 4, pp 777–784 | Cite as

Predicting the ergogenic response to methylphenidate

  • Michael KingEmail author
  • Keelyn Van Breda
  • Dan J. Stein
  • Kai Lutz
  • H. G. Laurie Rauch
Original Article

Abstract

Purpose

Methylphenidate (MPH) and other stimulants have been shown to enhance physical performance. However, stimulant research has almost exclusively been conducted in young, active persons with a normal BMI, and may not generalize to other groups. The purpose of this study was to determine whether the ergogenic response to MPH could be predicted by individual level characteristics.

Methods

We investigated whether weekly minutes of moderate-to-vigorous physical activity (MVPA), age, and BMI could predict the ergogenic response to MPH. In a double-blind, cross-over design 29 subjects (14M, 15F, 29.7 ± 9.68 years, BMI: 26.1 ± 6.82, MVPA: 568.8 ± 705.6 min) ingested MPH or placebo before performing a handgrip task. Percent change in mean force between placebo and MPH conditions was used to evaluate the extent of the ergogenic response.

Results

Mean force was significantly higher in MPH conditions [6.39% increase, T(25) = 3.09, p = 0.005 118.8 ± 37.96 (± SD) vs. 111.8 ± 34.99 Ns] but variable (coefficient of variation:163%). Using linear regression, we observed that min MVPA (T(25) = −2.15, β = −0.400, p = 0.044) and age [T(25) = −3.29, β = −0.598, p = 0.003] but not BMI [T(25) = 1.67, β = 0.320 p = 0.109] significantly predicted percent change in mean force in MPH conditions.

Conclusions

We report that lower levels of physical activity and younger age predict an improved ergogenic response to MPH and that this may be explained by differences in dopaminergic function. This study illustrates that the ergogenic response to MPH is partly dependent on individual differences such as habitual levels of physical activity and age.

Keywords

Ergogenic stimulants Athletic performance Athletic doping Ritalin 

Notes

Author contributions statement

The roles of the authors were as follows: MK: conception, data acquisition, design, interpretation, and drafting, KVB: data acquisition and drafting, DS: interpretation and drafting, KL: analysis, interpretation, and drafting, and HGLR: interpretation and drafting.

Funding

We acknowledge our funding contributions: National Research Foundation and Novartis South Africa.

Compliance with ethical standards

Conflict of interest

Novartis did not influence study design, data collection, analysis, interpretation, writing, or decision to submit the article for publication. No authors were paid by Novartis.

Supplementary material

421_2018_3800_MOESM1_ESM.tif (4.5 mb)
Supplementary Digital Content 1. Custom-built mock-fMRI used during familiarization session (TIF 4585 KB)
421_2018_3800_MOESM2_ESM.tif (4.4 mb)
Supplementary Digital Content 2. Participants performed 40 grip trials in the power grip position by flexing all digits around a custom-made MRI-compatible isometric handgrip dynamometer. Each grip trial was composed of alternating grip and rest periods, which lasted 12–13 and 5–7 s, respectively. The entire task lasted 13 min and 20 s. A grip trial was defined as failed if a participants’ force dropped below the target force by more than 10 % after having reached the target force (TIF 4525 KB)

Supplementary material 3 (MP4 10970 KB)

421_2018_3800_MOESM4_ESM.pdf (118 kb)
Supplementary Digital Content 3. Z score distributions of percent improvement (A), BMI (B), age (C), and min MVPA (D). The outlier value excluded from analyses is indicated in red (PDF 117 KB)
421_2018_3800_MOESM5_ESM.xlsx (39 kb)
Supplementary material 5 (XLSX 38 KB)

References

  1. Amorim P, Lecrubier Y, Weiller E et al (1998) DSM-IH-R psychotic disorders: procedural validity of the Mini International Neuropsychiatric Interview (MINI). Concordance and causes for discordance with the CIDI. Eur Psychiatry 13:26–34.  https://doi.org/10.1016/S0924-9338(97)86748-X CrossRefPubMedGoogle Scholar
  2. Briegleb SK, Gulley JM, Hoover BR, Zahniser NR (2004) Individual differences in cocaine- and amphetamine-induced activation of male Sprague–Dawley rats: contribution of the dopamine transporter. Neuropsychopharmacology 29:2168–2179.  https://doi.org/10.1038/sj.npp.1300536 CrossRefPubMedGoogle Scholar
  3. Bull FC, Maslin TS, Armstrong T (2009) Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health 6:790–804CrossRefPubMedGoogle Scholar
  4. Connell CJW, Thompson B, Turuwhenua J et al (2017) Effects of dopamine and norepinephrine on exercise-induced oculomotor fatigue. Med Sci Sports Exerc 49:1778–1788.  https://doi.org/10.1249/MSS.0000000000001307 CrossRefPubMedGoogle Scholar
  5. Dang LC, Samanez-Larkin GR, Castrellon JJ et al (2016) Associations between dopamine D2 receptor availability and BMI depend on age. NeuroImage 138:176–183.  https://doi.org/10.1016/j.neuroimage.2016.05.044 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15:69–78.  https://doi.org/10.1111/j.1600-0838.2005.00445.x CrossRefPubMedGoogle Scholar
  7. Dwyer G, Davis S (2017) ACSM’s. In: Health related physical fitness assessment manual, 3rd edn. Lippincott Williams & Wilkings, Philadelphia, pp 3–7 2008.Google Scholar
  8. Ebada ME, Kendall DA, Pardon M-C (2016) Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice. Behav Brain Res 311:228–238.  https://doi.org/10.1016/j.bbr.2016.05.051 CrossRefPubMedGoogle Scholar
  9. Eisenmann JC, Wickel EE (2007) Estimated energy expenditure and physical activity patterns of adolescent distance runners. Int J Sport Nutr Exerc Metab 17:178–188CrossRefPubMedGoogle Scholar
  10. Ekkekakis P, Lind E (2005) Exercise does not feel the same when you are overweight: the impact of self-selected and imposed intensity on affect and exertion. Int J Obes Relat Metab Disord 30:652–660.  https://doi.org/10.1038/sj.ijo.0803052 CrossRefGoogle Scholar
  11. Ekkekakis P, Hall EE, Petruzzello SJ (2005) Variation and homogeneity in affective responses to physical activity of varying intensities: an alternative perspective on dose–response based on evolutionary considerations. J of Sport Sci 23:477–500.  https://doi.org/10.1080/02640410400021492 CrossRefGoogle Scholar
  12. Erixon-Lindroth N, Farde L, Wahlin T-BR et al (2005) The role of the striatal dopamine transporter in cognitive aging. Psychiatr Res Neuroimage 138:1–12.  https://doi.org/10.1016/j.pscychresns.2004.09.005 CrossRefGoogle Scholar
  13. Goldman-Rakic PS, Brown RM (1981) Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience 6:177–187.  https://doi.org/10.1016/0306-4522(81)90053-1 CrossRefPubMedGoogle Scholar
  14. Hasegawa H, Piacentini MF, Sarre S et al (2008) Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol 586:141–149.  https://doi.org/10.1113/jphysiol.2007.142190 CrossRefPubMedGoogle Scholar
  15. Heyes MP, Garnett ES, Coates G (1985) Central dopaminergic activity influences rats ability to exercise. Life Sci 36:671–677CrossRefPubMedGoogle Scholar
  16. Hilty L, Jäncke L, Luechinger R et al (2010) Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum Brain Mapp 32:2151–2160.  https://doi.org/10.1002/hbm.21177 CrossRefPubMedGoogle Scholar
  17. Horstmann A, Fenske WK, Hankir MK (2015) Argument for a non-linear relationship between severity of human obesity and dopaminergic tone. Obes Rev 16:821–830.  https://doi.org/10.1111/obr.12303 CrossRefPubMedGoogle Scholar
  18. Kimko HC, Cross JT, Abernethy DR (1999) Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet 37:457–470.  https://doi.org/10.2165/00003088-199937060-00002 CrossRefPubMedGoogle Scholar
  19. King M, Rauch LHG, Brooks SJ et al (2017) Methylphenidate enhances grip force and alters brain connectivity. Med Sci Sports Exerc 49:1443–1451.  https://doi.org/10.1249/MSS.0000000000001252 CrossRefPubMedGoogle Scholar
  20. Klass M, Roelands B, Lévénez M et al (2012) Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc 44:2299–2308.  https://doi.org/10.1249/MSS.0b013e318265f356 CrossRefPubMedGoogle Scholar
  21. Knab AM, Lightfoot JT (2010) Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 6:133–150CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li S-C, Rieckmann A (2014) Neuromodulation and aging: implications of aging neuronal gain control on cognition. Curr Opin Neurobiol 29:148–158.  https://doi.org/10.1016/j.conb.2014.07.009 CrossRefPubMedGoogle Scholar
  23. Marcora SM (2016) Can doping be a good thing? Using psychoactive drugs to facilitate physical activity behaviour. Sports Med 46:1–5.  https://doi.org/10.1007/s40279-015-0412-x CrossRefPubMedGoogle Scholar
  24. Mathes WF, Nehrenberg DL, Gordon R et al (2010) Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behav Brain Res 210:155–163.  https://doi.org/10.1016/j.bbr.2010.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20:160–188.  https://doi.org/10.2165/00007256-199520030-00004 CrossRefPubMedGoogle Scholar
  26. Meeusen R, Roelands B (2010) Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scand J Med Sci Sports 20 Suppl 3:19–28.  https://doi.org/10.1111/j.1600-0838.2010.01205.x CrossRefPubMedGoogle Scholar
  27. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113.  https://doi.org/10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
  28. Pan D, Gatley SJ, Dewey SL et al (1994) Binding of bromine-substituted analogs of methylphenidate to monoamine transporters. Eur J Pharmacol 264:177–182.  https://doi.org/10.1016/0014-2999(94)00460-9 CrossRefPubMedGoogle Scholar
  29. Piacentini MF, Meeusen R, Buyse L et al (2002a) No effect of a selective serotonergic/noradrenergic reuptake inhibitor on endurance performance. Eur J Sport Sci 2:1–10.  https://doi.org/10.1080/17461391.2002.10142578 CrossRefGoogle Scholar
  30. Piacentini MF, Meeusen R, Buyse L et al (2002b) No effect of a noradrenergic reuptake inhibitor on performance in trained cyclists. Med Sci Sports Exerc 34:1189–1193CrossRefPubMedGoogle Scholar
  31. Rauch HGL, Schönbächler G, Noakes TD (2013) Neural correlates of motor vigour and motor urgency during exercise. Sports Med 43:227–241.  https://doi.org/10.1007/s40279-013-0025-1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rhodes JS, Garland T (2003) Differential sensitivity to acute administration of Ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 167:242–250.  https://doi.org/10.1007/s00213-003-1399-9 CrossRefPubMedGoogle Scholar
  33. Rhodes JS, Hosack GR, Girard I et al (2001) Differential sensitivity to acute administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 158:120–131.  https://doi.org/10.1007/s002130100857 CrossRefPubMedGoogle Scholar
  34. Rhodes JS, Garland T, Gammie SC (2003) Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci 117:1243–1256.  https://doi.org/10.1037/0735-7044.117.6.1243 CrossRefPubMedGoogle Scholar
  35. Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138.  https://doi.org/10.1007/s002210000407 CrossRefPubMedGoogle Scholar
  36. Roelands B, Meeusen R (2010) Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med 40:229–246.  https://doi.org/10.2165/11533670-000000000-00000 CrossRefPubMedGoogle Scholar
  37. Roelands B, Goekint M, Heyman E et al (2008a) Acute norepinephrine reuptake inhibition decreases performance in normal and high ambient temperature. J Appl Physiol 105:206–212.  https://doi.org/10.1152/japplphysiol.90509.2008 CrossRefPubMedGoogle Scholar
  38. Roelands B, Hasegawa H, Watson P et al (2008b) Performance and thermoregulatory effects of chronic bupropion administration in the heat. Eur J Appl Physiol 105:493–498.  https://doi.org/10.1007/s00421-008-0929-x CrossRefPubMedGoogle Scholar
  39. Roelands B, Hasegawa H, Watson P et al (2008c) The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc 40:879–885.  https://doi.org/10.1249/MSS.0b013e3181659c4d CrossRefPubMedGoogle Scholar
  40. Roelands B, Watson P, Cordery P et al (2012) A dopamine/noradrenaline reuptake inhibitor improves performance in the heat, but only at the maximum therapeutic dose. Scand J Med Sci Sports 22:e93–e98.  https://doi.org/10.1111/j.1600-0838.2012.01502.x CrossRefPubMedGoogle Scholar
  41. Santamaría A, Arias HR (2010) Neurochemical and behavioral effects elicited by bupropion and diethylpropion in rats. Behav Brain Res 211:132–139.  https://doi.org/10.1016/j.bbr.2010.03.023 CrossRefPubMedGoogle Scholar
  42. Slifstein M, Kolachana B, Simpson EH et al (2008) COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol Psychiatry 13:821–827.  https://doi.org/10.1038/mp.2008.19 CrossRefPubMedGoogle Scholar
  43. Spencer TJ, Bonab AA, Dougherty DD et al (2010) A PET study examining pharmacokinetics and dopamine transporter occupancy of two long-acting formulations of methylphenidate in adults. Int J Mol Med 25:261–265.  https://doi.org/10.3892/ijmm_00000339 PubMedGoogle Scholar
  44. Stefansky W (2012) Rejecting outliers in factorial designs. Technometrics 14:469–479.  https://doi.org/10.1080/00401706.1972.10488930 CrossRefGoogle Scholar
  45. Swart J, Lamberts RP, Lambert MI et al (2009) Exercising with reserve: evidence that the central nervous system regulates prolonged exercise performance. Br J Sports Med 43:782–788.  https://doi.org/10.1136/bjsm.2008.055889 CrossRefPubMedGoogle Scholar
  46. Treadway MT, Buckholtz JW, Cowan RL et al (2012) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32:6170–6176.  https://doi.org/10.1523/JNEUROSCI.6459-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Troiano AR, Schulzer M, la Fuente-Fernandez de R et al (2010) Dopamine transporter PET in normal aging: dopamine transporter decline and its possible role in preservation of motor function. Synapse 64:146–151.  https://doi.org/10.1002/syn.20708 CrossRefPubMedGoogle Scholar
  48. Volkow ND, Fowler JS, Wang G et al (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6(Suppl 1):S31–S43CrossRefPubMedGoogle Scholar
  49. Volkow ND, Wang G-J, Telang F et al (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42:1537–1543.  https://doi.org/10.1016/j.neuroimage.2008.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang GJ, Volkow ND, Logan J et al (2001) Brain dopamine and obesity. Lancet 357:354–357CrossRefPubMedGoogle Scholar
  51. Warren GL, Park ND, Maresca RD et al (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42:1375–1387.  https://doi.org/10.1249/MSS.0b013e3181cabbd8 CrossRefPubMedGoogle Scholar
  52. Watson P, Hasegawa H, Roelands B et al (2005) Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol 565:873–883.  https://doi.org/10.1113/jphysiol.2004.079202 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Exercise Science and Sports MedicineUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
  3. 3.Vascular Neurology and NeurorehabilitationUniversity of ZurichZurichSwitzerland
  4. 4.Cereneo Center for Neurology and RehabilitationVitznauSwitzerland
  5. 5.Cape TownSouth Africa

Personalised recommendations