Advertisement

European Journal of Applied Physiology

, Volume 117, Issue 10, pp 2029–2038 | Cite as

Executive function after exhaustive exercise

  • Mizuki Sudo
  • Takaaki Komiyama
  • Ryo Aoyagi
  • Toshiya Nagamatsu
  • Yasuki Higaki
  • Soichi AndoEmail author
Original Article

Abstract

Purpose

Findings concerning the effects of exhaustive exercise on cognitive function are somewhat equivocal. The purpose of this study was to identify physiological factors that determine executive function after exhaustive exercise.

Methods

Thirty-two participants completed the cognitive tasks before and after an incremental exercise until exhaustion (exercise group: N = 18) or resting period (control group N = 14). The cognitive task was a combination of a Spatial Delayed-Response (Spatial DR) task and a Go/No-Go task, which requires executive function. Cerebral oxygenation and skin blood flow were monitored during the cognitive task over the prefrontal cortex. Venous blood samples were collected before and after the exercise or resting period, and blood catecholamines, serum brain-derived neurotrophic factor, insulin-like growth hormone factor 1, and blood lactate concentrations were analyzed.

Results

In the exercise group, exhaustive exercise did not alter reaction time (RT) in the Go/No-Go task (pre: 861 ± 299 ms vs. post: 775 ± 168 ms) and the number of error trials in the Go/No-Go task (pre: 0.9 ± 0.7 vs. post: 1.8 ± 1.8) and the Spatial DR task (pre: 0.3 ± 0.5 vs. post: 0.8 ± 1.2). However, ΔRT was negatively correlated with Δcerebral oxygenation (r = −0.64, P = 0.004). Other physiological parameters were not correlated with cognitive performance. Venous blood samples were not directly associated with cognitive function after exhaustive exercise.

Conclusion

The present results suggest that recovery of regional cerebral oxygenation affects executive function after exhaustive exercise.

Keywords

Executive function Reaction time Cerebral oxygenation Brain 

Abbreviations

BDNF

Brain-derived neurotrophic factor

DBP

Diastolic blood pressure

Deoxy-Hb

Deoxyhemoglobin

DR

Delayed-response

IGF-1

Insulin-like growth hormone factor 1

NIRS

Near-infrared spectroscopy

NTS

Nucleus tractus solitarii

Oxy-Hb

Oxyhemoglobin

RPE

Ratings of perceived exertion

RT

Reaction time

SBP

Systolic blood pressure

SD

Standard deviation

Total-Hb

Total hemoglobin

Notes

Acknowledgements

We are grateful to Dr. Kisou Kubota for providing software to evaluate cognitive function.

Compliance with ethical standards

Funding

This study was funded by the Japan Society for the Promotion of Science KAKENHI (Grant Number: 25702039).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. Ando S, Yamada Y, Kokubu M (2010) Reaction time to peripheral visual stimuli during exercise under hypoxia. J Appl Physiol 108(5):1210–1216. doi: 10.1152/japplphysiol.01115.2009 CrossRefPubMedGoogle Scholar
  2. Ando S, Kokubu M, Yamada Y, Kimura M (2011) Does cerebral oxygenation affect cognitive function during exercise? Eur J Appl Physiol 111(9):1973–1982. doi: 10.1007/s00421-011-1827-1 CrossRefPubMedGoogle Scholar
  3. Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, Higaki Y (2013) The effects of exercise under hypoxia on cognitive function. PLoS One 8(5):e63630. doi: 10.1371/journal.pone.0063630 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertollo M, di Fronso S, Filho E, Lamberti V, Ripari P, Machado Reis V, Comani S, Bortoli L, Robazza C (2015) To focus or not to focus: is attention on the core components of action beneficial for cycling performance? Sport Psychol 29(2):110–119CrossRefGoogle Scholar
  5. Borg G (ed) (1975) Simple rating for estimation of perceived exertion. Physical work and effort. Pergamon, New YorkGoogle Scholar
  6. Borst SE, De Hoyos DV, Garzarella L, Vincent K, Pollock BH, Lowenthal DT, Pollock ML (2001) Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med Sci Sports Exerc 33(4):648–653CrossRefPubMedGoogle Scholar
  7. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11(4):213–222CrossRefPubMedGoogle Scholar
  8. Brisswalter J, Collardeau M, Rene A (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Med 32(9):555–566CrossRefPubMedGoogle Scholar
  9. Cassilhas RC, Viana VA, Grassmann V, Santos RT, Santos RF, Tufik S, Mello MT (2007) The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 39(8):1401–1407. doi: 10.1249/mss.0b013e318060111f CrossRefPubMedGoogle Scholar
  10. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317. doi: 10.1016/j.neuroscience.2011.11.029 CrossRefPubMedGoogle Scholar
  11. Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101. doi: 10.1016/j.brainres.2012.02.068 CrossRefPubMedGoogle Scholar
  12. Chmura J, Nazar K, Kaciuba-Uscilko H (1994) Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med 15(4):172–176. doi: 10.1055/s-2007-1021042 CrossRefPubMedGoogle Scholar
  13. Cooper CJ (1973) Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics 16(5):601–609. doi: 10.1080/00140137308924551 CrossRefPubMedGoogle Scholar
  14. Cornford EM, Braun LD, Oldendorf WH, Hill MA (1982) Comparison of lipid-mediated blood–brain-barrier penetrability in neonates and adults. Am J Physiol 243(3):C161–C168PubMedGoogle Scholar
  15. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301CrossRefPubMedGoogle Scholar
  16. Dietrich A, Audiffren M (2011) The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev 35(6):1305–1325. doi: 10.1016/j.neubiorev.2011.02.001 CrossRefPubMedGoogle Scholar
  17. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140(3):823–833. doi: 10.1016/j.neuroscience.2006.02.084 CrossRefPubMedGoogle Scholar
  18. Ekkekakis P, Vazou S, Bixby WR, Georgiadis E (2016) The mysterious case of the public health guideline that is (almost) entirely ignored: call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes Rev 17(4):313–329. doi: 10.1111/obr.12369 CrossRefPubMedGoogle Scholar
  19. Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67(8):850–857. doi: 10.1016/j.jclinepi.2014.03.012 CrossRefPubMedGoogle Scholar
  20. Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH (2004) Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 557(Pt 1):331–342. doi: 10.1113/jphysiol.2004.060574 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Harada T, Okagawa S, Kubota K (2004) Jogging improved performance of a behavioral branching task: implications for prefrontal activation. Neurosci Res 49(3):325–337. doi: 10.1016/j.neures.2004.03.011 CrossRefPubMedGoogle Scholar
  22. Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61(4):397–414CrossRefPubMedGoogle Scholar
  23. Komiyama T, Sudo M, Higaki Y, Kiyonaga A, Tanaka H, Ando S (2015) Does moderate hypoxia alter working memory and executive function during prolonged exercise? Physiol Behav 139:290–296. doi: 10.1016/j.physbeh.2014.11.057 CrossRefPubMedGoogle Scholar
  24. Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24. doi: 10.1016/j.brainres.2010.03.091 CrossRefPubMedGoogle Scholar
  25. Lee JK, Koh AC, Koh SX, Liu GJ, Nio AQ, Fan PW (2014) Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur J Appl Physiol 114(2):375–384. doi: 10.1007/s00421-013-2774-9 CrossRefPubMedGoogle Scholar
  26. McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci USA 93(24):13508–13514CrossRefPubMedPubMedCentralGoogle Scholar
  27. McMorris T (2016a) Beyond the catecholamine hypothesis for an acute exercise–cognition interaction: a neurochemical perspective. In: McMorris T (ed) Exercise–cognition interaction: neuroscience perspective. Elsevier, Amsterdam, pp 65–103Google Scholar
  28. McMorris T (2016b) Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: lessons from animal studies. Physiol Behav 165:291–299. doi: 10.1016/j.physbeh.2016.08.011 CrossRefPubMedGoogle Scholar
  29. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188CrossRefPubMedGoogle Scholar
  30. Mekari S, Fraser S, Bosquet L, Bonnery C, Labelle V, Pouliot P, Lesage F, Bherer L (2015) The relationship between exercise intensity, cerebral oxygenation and cognitive performance in young adults. Eur J Appl Physiol 115(10):2189–2197. doi: 10.1007/s00421-015-3199-4 CrossRefPubMedGoogle Scholar
  31. Miyashita T, Williams CL (2006) Epinephrine administration increases neural impulses propagated along the vagus nerve: role of peripheral beta-adrenergic receptors. Neurobiol Learn Mem 85(2):116–124. doi: 10.1016/j.nlm.2005.08.013 CrossRefPubMedGoogle Scholar
  32. Nishijima T, Torres-Aleman I, Soya H (2016) Exercise and cerebrovascular plasticity. Prog Brain Res 225:243–268. doi: 10.1016/bs.pbr.2016.03.010 CrossRefPubMedGoogle Scholar
  33. Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72(4):223–261. doi: 10.1016/j.pneurobio.2004.03.005 CrossRefPubMedGoogle Scholar
  34. Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107(5):1370–1380. doi: 10.1152/japplphysiol.00573.2009 CrossRefPubMedGoogle Scholar
  35. Piepmeier AT, Etnier JL (2015) Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport Health Sci 4(1):14–23. doi: 10.1016/j.jshs.2014.11.001 CrossRefGoogle Scholar
  36. Quistorff B, Secher NH, Van Lieshout JJ (2008) Lactate fuels the human brain during exercise. FASEB J 22(10):3443–3449. doi: 10.1096/fj.08-106104 CrossRefPubMedGoogle Scholar
  37. Raichle M, Hornbein T (2001) The high-altitude brain. In: Hornbein T, Schoene R (eds) High altitude: an exploration of human adaptation. Marcel Dekker, New York, pp 377–423Google Scholar
  38. Ramsay DS, Woods SC (2014) Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121(2):225–247. doi: 10.1037/a0035942 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rooks CR, Thom NJ, McCully KK, Dishman RK (2010) Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol 92(2):134–150. doi: 10.1016/j.pneurobio.2010.06.002 CrossRefPubMedGoogle Scholar
  40. Schmit C, Davranche K, Easthope CS, Colson SS, Brisswalter J, Radel R (2015) Pushing to the limits: the dynamics of cognitive control during exhausting exercise. Neuropsychologia 68:71–81. doi: 10.1016/j.neuropsychologia.2015.01.006 CrossRefPubMedGoogle Scholar
  41. Sorensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, Rasmussen P (2012) Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology 117(2):263–270. doi: 10.1097/ALN.0b013e3182605afe CrossRefPubMedGoogle Scholar
  42. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S (2011) Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 57(3):991–1002. doi: 10.1016/j.neuroimage.2011.05.012 CrossRefPubMedGoogle Scholar
  43. Tobias JD, Johnson GA, Rehman S, Fisher R, Caron N (2008) Cerebral oxygenation monitoring using near infrared spectroscopy during one-lung ventilation in adults. J Minim Access Surg 4(4):104–107CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tsai CL, Wang CH, Pan CY, Chen FC, Huang TH, Chou FY (2014) Executive function and endocrinological responses to acute resistance exercise. Front Behav Neurosci 8:262. doi: 10.3389/fnbeh.2014.00262 PubMedPubMedCentralGoogle Scholar
  45. Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, Isaka T, Ogoh S, Hashimoto T (2016) Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav 160:26–34. doi: 10.1016/j.physbeh.2016.03.029 CrossRefPubMedGoogle Scholar
  46. van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 199(4):499–508. doi: 10.1111/j.1748-1716.2010.02122.x CrossRefGoogle Scholar
  47. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. doi: 10.1016/j.tics.2013.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87(4):597–609. doi: 10.1016/j.nlm.2006.11.003 CrossRefPubMedGoogle Scholar
  49. Yucel MA, Aasted CM, Petkov MP, Borsook D, Boas DA, Becerra L (2015) Specificity of hemodynamic brain responses to painful stimuli: a functional near-infrared spectroscopy study. Sci Rep 5:9469. doi: 10.1038/srep09469 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mizuki Sudo
    • 1
  • Takaaki Komiyama
    • 2
  • Ryo Aoyagi
    • 2
  • Toshiya Nagamatsu
    • 1
  • Yasuki Higaki
    • 3
  • Soichi Ando
    • 4
    Email author
  1. 1.Physical Fitness Research InstituteMeiji Yasuda Life Foundation of Health and WelfareHachiojiJapan
  2. 2.Graduate School of Sports and Health ScienceFukuoka UniversityFukuokaJapan
  3. 3.Faculty of Sports and Health ScienceFukuoka UniversityFukuokaJapan
  4. 4.Graduate School of Informatics and EngineeringThe University of Electro-communicationsChofuJapan

Personalised recommendations