European Journal of Applied Physiology

, Volume 117, Issue 11, pp 2125–2135 | Cite as

Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

  • Scott J. Dankel
  • Kevin T. Mattocks
  • Matthew B. Jessee
  • Samuel L. Buckner
  • J. Grant Mouser
  • Jeremy P. LoennekeEmail author
Invited Review


Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.


Blood flow restriction Fatigue Lactate Metabolic stress Motor unit recruitment Resistance training 



One-repetition maximum


AMP-activated protein kinase


Calcium–calmodulin protein kinase II




Focal adhesion kinase


Mitogen-activated protein kinase


Mechanistic target of rapamycin complex 1


Tuberous sclerosis complex 2


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.




  1. American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708. doi: 10.1249/MSS.0b013e3181915670 CrossRefGoogle Scholar
  2. Atherton PJ, Phillips BE, Wilkinson DJ (2015) Exercise and regulation of protein metabolism. Prog Mol Biol Transl Sci 135:75–98. doi: 10.1016/bs.pmbts.2015.06.015 CrossRefPubMedGoogle Scholar
  3. Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794CrossRefPubMedGoogle Scholar
  4. Barcelos LC, Nunes PRP, de Souza LRMF et al (2015) Low-load resistance training promotes muscular adaptation regardless of vascular occlusion, load, or volume. Eur J Appl Physiol 115:1559–1568. doi: 10.1007/s00421-015-3141-9 CrossRefPubMedGoogle Scholar
  5. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406. doi: 10.1016/j.tcb.2014.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beck GR (2003) Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem 90:234–243. doi: 10.1002/jcb.10622 CrossRefPubMedGoogle Scholar
  7. Bergquist AJ, Wiest MJ, Collins DF (2012) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris. J Appl Physiol Bethesda Md 1985 113:78–89. doi: 10.1152/japplphysiol.00074.2011 Google Scholar
  8. Bigland-Ritchie B, Cafarelli E, Vøllestad NK (1986) Fatigue of submaximal static contractions. Acta Physiol Scand Suppl 556:137–148PubMedGoogle Scholar
  9. Bodine SC, Stitt TN, Gonzalez M et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019. doi: 10.1038/ncb1101-1014 CrossRefPubMedGoogle Scholar
  10. Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol Bethesda Md 1985 99:414–423. doi: 10.1152/japplphysiol.00015.2005 Google Scholar
  11. Collins DF (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35:102–109. doi: 10.1097/jes.0b013e3180a0321b CrossRefPubMedGoogle Scholar
  12. Counts BR, Buckner SL, Dankel SJ et al (2016) The acute and chronic effects of “NO LOAD” resistance training. Physiol Behav 164:345–352. doi: 10.1016/j.physbeh.2016.06.024 CrossRefPubMedGoogle Scholar
  13. Dankel SJ, Buckner SL, Jessee MB et al (2016a) Post-exercise blood flow restriction attenuates muscle hypertrophy. Eur J Appl Physiol 116:1955–1963. doi: 10.1007/s00421-016-3447-2 CrossRefPubMedGoogle Scholar
  14. Dankel SJ, Jessee MB, Abe T, Loenneke JP (2016b) The effects of blood flow restriction on upper-body musculature located distal and proximal to applied pressure. Sports Med Auckl NZ 46:23–33. doi: 10.1007/s40279-015-0407-7 CrossRefGoogle Scholar
  15. Dankel SJ, Buckner SL, Jessee MB et al (2017a) Can blood flow restriction augment muscle activation during high-load training? Clin Physiol Funct Imaging. doi: 10.1111/cpf.12414 Google Scholar
  16. Dankel SJ, Counts BR, Barnett BE et al (2017b) Muscle adaptations following 21 consecutive days of strength test familiarization compared with traditional training. Muscle Nerve. doi: 10.1002/mus.25488 Google Scholar
  17. De Luca CJ, Erim Z (1994) Common drive of motor units in regulation of muscle force. Trends Neurosci 17:299–305CrossRefPubMedGoogle Scholar
  18. De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Control scheme governing concurrently active human motor units during voluntary contractions. J Physiol 329:129–142CrossRefPubMedPubMedCentralGoogle Scholar
  19. Debold EP (2012) Recent insights into the molecular basis of muscular fatigue. Med Sci Sports Exerc 44:1440–1452. doi: 10.1249/MSS.0b013e31824cfd26 CrossRefPubMedGoogle Scholar
  20. Dentel JN, Blanchard SG, Ankrapp DP et al (2005) Inhibition of cross-bridge formation has no effect on contraction-associated phosphorylation of p38 MAPK in mouse skeletal muscle. Am J Physiol Cell Physiol 288:C824–C830. doi: 10.1152/ajpcell.00500.2004 CrossRefPubMedGoogle Scholar
  21. Ellefsen S, Hammarström D, Strand TA et al (2015) Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol 309:R767–R779. doi: 10.1152/ajpregu.00497.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fahs CA, Loenneke JP, Thiebaud RS et al (2015) Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clin Physiol Funct Imaging 35:167–176. doi: 10.1111/cpf.12141 CrossRefPubMedGoogle Scholar
  23. Farup J, de Paoli F, Bjerg K et al (2015) Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports 25:754–763. doi: 10.1111/sms.12396 CrossRefPubMedGoogle Scholar
  24. Fry CS, Glynn EL, Drummond MJ et al (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol Bethesda Md 1985 108:1199–1209. doi: 10.1152/japplphysiol.01266.2009 Google Scholar
  25. Garten RS, Goldfarb A, Crabb B, Waller J (2015) The impact of partial vascular occlusion on oxidative stress markers during resistance exercise. Int J Sports Med 36:542–549. doi: 10.1055/s-0034-1396827 CrossRefPubMedGoogle Scholar
  26. Goldfarb AH, Garten RS, Chee PDM et al (2008) Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol 104:813–819. doi: 10.1007/s00421-008-0836-1 CrossRefPubMedGoogle Scholar
  27. Goldmann WH (2012) Mechanotransduction and focal adhesions. Cell Biol Int 36:649–652. doi: 10.1042/CBI20120184 CrossRefPubMedGoogle Scholar
  28. Gorgey AS, Timmons MK, Dolbow DR et al (2016) Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol 116:1231–1244. doi: 10.1007/s00421-016-3385-z CrossRefPubMedGoogle Scholar
  29. Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37:955–963PubMedGoogle Scholar
  30. Gundermann DM, Walker DK, Reidy PT et al (2014) Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. Am J Physiol Endocrinol Metab 306:E1198–1204. doi: 10.1152/ajpendo.00600.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hausenblas HA, Fallon EA (2006) Exercise and body image: a meta-analysis. Psychol Health 21:33–47. doi: 10.1080/14768320500105270 CrossRefGoogle Scholar
  32. Hornberger TA, Chu WK, Mak YW et al (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci USA 103:4741–4746. doi: 10.1073/pnas.0600678103 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ikai M, Fukunaga T (1970) A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Für Angew Physiol Einschl Arbeitsphysiol 28:173–180. doi: 10.1007/BF00696025 Google Scholar
  34. Ito N, Ruegg UT, Kudo A et al (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101–106. doi: 10.1038/nm.3019 CrossRefPubMedGoogle Scholar
  35. Jacobs BL, McNally RM, Kim KJ et al (2017) Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J Biol Chem. doi: 10.1074/jbc.M117.777805 Google Scholar
  36. Kraemer WJ, Noble BJ, Clark MJ, Culver BW (1987) Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med 8:247–252. doi: 10.1055/s-2008-1025663 CrossRefPubMedGoogle Scholar
  37. Laurentino G, Ugrinowitsch C, Aihara AY et al (2008) Effects of strength training and vascular occlusion. Int J Sports Med 29:664–667. doi: 10.1055/s-2007-989405 CrossRefPubMedGoogle Scholar
  38. Laurentino GC, Ugrinowitsch C, Roschel H et al (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44:406–412. doi: 10.1249/MSS.0b013e318233b4bc CrossRefPubMedGoogle Scholar
  39. Laurin J, Pertici V, Dousset E et al (2015) Group III and IV muscle afferents: role on central motor drive and clinical implications. Neuroscience 290:543–551. doi: 10.1016/j.neuroscience.2015.01.065 CrossRefPubMedGoogle Scholar
  40. Lauver JD, Cayot TE, Rotarius T, Scheuermann BW (2017) The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. Eur J Appl Physiol. doi: 10.1007/s00421-017-3589-x PubMedGoogle Scholar
  41. LeFever RS, De Luca CJ (1982) A procedure for decomposing the myoelectric signal into its constituent action potentials–part I: technique, theory, and implementation. IEEE Trans Biomed Eng 29:149–157CrossRefPubMedGoogle Scholar
  42. Lin H, Wang SW, Wang RY, Wang PS (2001) Stimulatory effect of lactate on testosterone production by rat leydig cells. J Cell Biochem 83:147–154CrossRefPubMedGoogle Scholar
  43. Loenneke JP, Fahs CA, Wilson JM, Bemben MG (2011) Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses 77:748–752. doi: 10.1016/j.mehy.2011.07.029 CrossRefPubMedGoogle Scholar
  44. Loenneke JP, Balapur A, Thrower AD et al (2012a) Blood flow restriction reduces time to muscular failure. Eur J Sport Sci 12:238–243. doi: 10.1080/17461391.2010.551420 CrossRefGoogle Scholar
  45. Loenneke JP, Wilson JM, Marín PJ et al (2012b) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112:1849–1859. doi: 10.1007/s00421-011-2167-x CrossRefPubMedGoogle Scholar
  46. Manini TM, Clark BC (2009) Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev 37:78–85. doi: 10.1097/JES.0b013e31819c2e5c CrossRefPubMedGoogle Scholar
  47. Marcotte GR, West DWD, Baar K (2015) The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int 96:196–210. doi: 10.1007/s00223-014-9925-9 CrossRefPubMedGoogle Scholar
  48. Meyer RA (2006) Does blood flow restriction enhance hypertrophic signaling in skeletal muscle? J Appl Physiol Bethesda Md 1985 100:1443–1444. doi: 10.1152/japplphysiol.01636.2005 Google Scholar
  49. Mitchell CJ, Churchward-Venne TA, West DWD et al (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71. doi: 10.1152/japplphysiol.00307.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Moritani T, Sherman WM, Shibata M et al (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol 64:552–556CrossRefGoogle Scholar
  51. Morton RW, Oikawa SY, Wavell CG et al (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol Bethesda Md 1985 121:129–138. doi: 10.1152/japplphysiol.00154.2016 Google Scholar
  52. Nalbandian M, Takeda M (2016) Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology 5:38CrossRefPubMedCentralGoogle Scholar
  53. Natsume T, Ozaki H, Saito AI et al (2015) Effects of electrostimulation with blood flow restriction on muscle size and strength. Med Sci Sports Exerc 47:2621–2627. doi: 10.1249/MSS.0000000000000722 CrossRefPubMedGoogle Scholar
  54. Nielsen JL, Aagaard P, Bech RD et al (2012) Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol 590:4351–4361. doi: 10.1113/jphysiol.2012.237008 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nishimura A, Sugita M, Kato K et al (2010) Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform 5:497–508CrossRefPubMedGoogle Scholar
  56. O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587:3691–3701. doi: 10.1113/jphysiol.2009.173609 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ogasawara R, Loenneke JP, Thiebaud RS, Abe T (2013) Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med 4:114. doi: 10.4236/ijcm.2013.42022 CrossRefGoogle Scholar
  58. Oishi Y, Tsukamoto H, Yokokawa T et al (2015) Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol Bethesda Md 1985 118:742–749. doi: 10.1152/japplphysiol.00054.2014 Google Scholar
  59. Ozaki H, Abe T, Mikesky AE et al (2015) Physiological stimuli necessary for muscle hypertrophy. J Phys Fit Sports Med 4:43–51CrossRefGoogle Scholar
  60. Ozaki H, Loenneke JP, Buckner SL, Abe T (2016) Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Med Hypotheses 88:22–26. doi: 10.1016/j.mehy.2015.12.026 CrossRefPubMedGoogle Scholar
  61. Park JH, Brown RL, Park CR et al (1987) Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise. Proc Natl Acad Sci USA 84:8976–8980CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med Auckl NZ 45:187–200. doi: 10.1007/s40279-014-0264-9 CrossRefGoogle Scholar
  63. Person RS (1974) Rhythmic activity of a group of human motoneurones during voluntary contraction of a muscle. Electroencephalogr Clin Neurophysiol 36:585–595. doi: 10.1016/0013-4694(74)90225-9 CrossRefPubMedGoogle Scholar
  64. Schoenfeld BJ (2013) Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43:179–194. doi: 10.1007/s40279-013-0017-1 CrossRefPubMedGoogle Scholar
  65. Schott J, McCully K, Rutherford OM (1995) The role of metabolites in strength training. II. Short versus long isometric contractions. Eur J Appl Physiol 71:337–341CrossRefGoogle Scholar
  66. Smith RC, Rutherford OM (1995) The role of metabolites in strength training. I. A comparison of eccentric and concentric contractions. Eur J Appl Physiol 71:332–336CrossRefGoogle Scholar
  67. Spina A, Sorvillo L, Esposito A et al (2013) Inorganic phosphate as a signaling molecule: a potential strategy in osteosarcoma treatment. Curr Pharm Des 19:5394–5403CrossRefPubMedGoogle Scholar
  68. Suga T, Okita K, Morita N et al (2009) Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol Bethesda Md 1985 106:1119–1124. doi: 10.1152/japplphysiol.90368.2008 Google Scholar
  69. Suga T, Okita K, Morita N et al (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol Bethesda Md 1985 108:1563–1567. doi: 10.1152/japplphysiol.00504.2009 Google Scholar
  70. Suga T, Okita K, Takada S et al (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112:3915–3920. doi: 10.1007/s00421-012-2377-x CrossRefPubMedPubMedCentralGoogle Scholar
  71. Takano H, Morita T, Iida H et al (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95:65–73. doi: 10.1007/s00421-005-1389-1 CrossRefPubMedGoogle Scholar
  72. Takarada Y, Nakamura Y, Aruga S et al (2000a) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol Bethesda Md 1985 88:61–65Google Scholar
  73. Takarada Y, Takazawa H, Sato Y et al (2000b) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88:2097–2106PubMedGoogle Scholar
  74. Tanimoto M, Sanada K, Yamamoto K et al (2008) Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res 22:1926–1938. doi: 10.1519/JSC.0b013e318185f2b0 CrossRefPubMedGoogle Scholar
  75. Timmerman KL, Lee JL, Dreyer HC et al (2010) Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J Clin Endocrinol Metab 95:3848–3857. doi: 10.1210/jc.2009-2696 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Vandenborne K, McCully K, Kakihira H et al (1991) Metabolic heterogeneity in human calf muscle during maximal exercise. Proc Natl Acad Sci 88:5714–5718. doi: 10.1073/pnas.88.13.5714 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Villanueva MG, Lane CJ, Schroeder ET (2015) Short rest interval lengths between sets optimally enhance body composition and performance with 8 weeks of strength resistance training in older men. Eur J Appl Physiol 115:295–308. doi: 10.1007/s00421-014-3014-7 CrossRefPubMedGoogle Scholar
  78. Wernbom M, Järrebring R, Andreasson MA, Augustsson J (2009) Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res 23:2389–2395. doi: 10.1519/JSC.0b013e3181bc1c2a CrossRefPubMedGoogle Scholar
  79. West DWD, Baar K (2013) May the Force move you: TSC-ing the mechanical activation of mTOR. J Physiol 591:4369–4370. doi: 10.1113/jphysiol.2013.260216 CrossRefPubMedPubMedCentralGoogle Scholar
  80. West DWD, Burd NA, Tang JE et al (2010) Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol Bethesda Md 1985 108:60–67. doi: 10.1152/japplphysiol.01147.2009 Google Scholar
  81. Westgaard RH, de Luca CJ (1999) Motor unit substitution in long-duration contractions of the human trapezius muscle. J Neurophysiol 82:501–504PubMedGoogle Scholar
  82. Willkomm L, Schubert S, Jung R et al (2014) Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res 12:742–753. doi: 10.1016/j.scr.2014.03.004 CrossRefPubMedGoogle Scholar
  83. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482PubMedGoogle Scholar
  84. Yasuda T, Brechue WF, Fujita T et al (2009) Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci 27:479–489. doi: 10.1080/02640410802626567 CrossRefPubMedGoogle Scholar
  85. You J-S, Lincoln HC, Kim C-R et al (2014) The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 289:1551–1563. doi: 10.1074/jbc.M113.531392 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Scott J. Dankel
    • 1
  • Kevin T. Mattocks
    • 1
  • Matthew B. Jessee
    • 1
  • Samuel L. Buckner
    • 1
  • J. Grant Mouser
    • 1
  • Jeremy P. Loenneke
    • 1
    Email author
  1. 1.Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation ManagementThe University of MississippiUniversityUSA

Personalised recommendations