European Journal of Applied Physiology

, Volume 117, Issue 10, pp 2001–2007 | Cite as

Increase in echo intensity and extracellular-to-intracellular water ratio is independently associated with muscle weakness in elderly women

  • Masashi TaniguchiEmail author
  • Yosuke Yamada
  • Yoshihiro Fukumoto
  • Shinichiro Sawano
  • Seigo Minami
  • Tome Ikezoe
  • Yuya Watanabe
  • Misaka Kimura
  • Noriaki Ichihashi
Original Article



The changes in muscle composition and its heterogeneity during aging are associated with muscle weakness in elderly persons independent of decreases in muscle mass or muscle thickness (MT). Both the assessment of echo intensity (EI) with ultrasound imaging and the evaluation of the extracellular water/intracellular water (ECW/ICW) ratio with segmental bioelectrical impedance spectroscopy (BIS) are non-invasive and convenient methods and seem valuable for muscle quality determination. However, no previous study has evaluated both EI and the ECW/ICW ratio simultaneously to investigate their relationship to muscle strength. The purpose of the present study was to investigate whether both EI and the ECW/ICW ratio are independently associated with muscle strength in elderly women.


A total of 179 elderly women with a mean age of 74.1 ± 4.9 years, living independently in the community, were enrolled. The MT and EI of the quadriceps femoris were measured using transverse ultrasound imaging. The ECW/ICW ratio in the upper thigh was calculated from segmental BIS. The maximum knee extensor strength and the presence of knee pain were also assessed.


Knee extensor strength showed a significant positive correlation with MT, and significant negative correlations with EI, the ECW/ICW ratio, and age. Stepwise regression analysis revealed that knee extensor strength in elderly women was predicted by MT, EI, and the ECW/ICW ratio.


This study suggests that the simultaneous application of EI and the ECW/ICW ratio is useful in assessing muscle strength, and accurately estimates the changes in muscle quality related to muscle weakness.


Muscle strength Muscle quality Echo intensity Extracellular water Muscle thickness 



Bioelectrical impedance spectroscopy


Body mass index


Extracellular water


Echo intensity


Intracellular water


Muscle thickness


Rectus femoris


Vastus intermedius



The authors would like to thank Nishimura T, Watanabe A, Kaihara C, Iwane K, and Shoji Y for their practical and technical assistance. The authors also thank all individuals who participated in the study. This study was not funded by any institutions, agencies, or companies.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.


  1. Akima H, Hioki M, Yoshiko A, Koike T, Sakakibara H, Takahashi H, Oshida Y (2016) Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids. Magn Reson Imaging 34:397–403. doi: 10.1016/j.mri.2015.12.038 CrossRefPubMedGoogle Scholar
  2. Azzabou N, Hogrel JY, Carlier PG (2015) NMR based biomarkers to study age-related changes in the human quadriceps. Exp Gerontol 70:54–60. doi: 10.1016/j.exger.2015.06.015 CrossRefPubMedGoogle Scholar
  3. Cadore EL, Izquierdo M, Conceicao M, Radaelli R, Pinto RS, Baroni BM, Vaz MA, Alberton CL, Pinto SS, Cunha G, Bottaro M, Kruel LF (2012) Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol 47:473–478. doi: 10.1016/j.exger.2012.04.002 CrossRefPubMedGoogle Scholar
  4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423. doi: 10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fukumoto Y, Ikezoe T, Tateuchi H, Tsukagoshi R, Akiyama H, So K, Kuroda Y, Yoneyama T, Ichihashi N (2012a) Muscle mass and composition of the hip, thigh and abdominal muscles in women with and without hip osteoarthritis. Ultrasound Med Biol 38:1540–1545. doi: 10.1016/j.ultrasmedbio.2012.04.016 CrossRefPubMedGoogle Scholar
  6. Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N (2012b) Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol 112:1519–1525. doi: 10.1007/s00421-011-2099-5 CrossRefPubMedGoogle Scholar
  7. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol 90:2157–2165PubMedGoogle Scholar
  8. Heckmatt JZ, Leeman S, Dubowitz V (1982) Ultrasound imaging in the diagnosis of muscle disease. J Pediatr 101:656–660CrossRefPubMedGoogle Scholar
  9. Helme RD, Gibson SJ (2001) The epidemiology of pain in elderly people. Clin Geriatr Med 17:417–431CrossRefPubMedGoogle Scholar
  10. Hirani V, Naganathan V, Blyth F, Le Couteur DG, Seibel MJ, Waite LM, Handelsman DJ, Cumming RG (2016) Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: the Concord Health and Ageing in Men Project. Age Ageing. doi: 10.1093/ageing/afw214 PubMedGoogle Scholar
  11. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 years. J Appl Physiol 89:81–88PubMedGoogle Scholar
  12. Kaysen GA, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai C, Kuhlmann MK, Levin NW (2005) Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am J Clin Nutr 82:988–995PubMedGoogle Scholar
  13. Kent-Braun JA, Ng AV, Young K (2000) Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol 88:662–668PubMedGoogle Scholar
  14. Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349PubMedGoogle Scholar
  15. Kushner RF, Gudivaka R, Schoeller DA (1996) Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr 64:423S–427SPubMedGoogle Scholar
  16. Liikavainio T, Lyytinen T, Tyrvainen E, Sipila S, Arokoski JP (2008) Physical function and properties of quadriceps femoris muscle in men with knee osteoarthritis. Arch Phys Med Rehabil 89:2185–2194. doi: 10.1016/j.apmr.2008.04.012 CrossRefPubMedGoogle Scholar
  17. Lopez P, Wilhelm EN, Rech A, Minozzo F, Radaelli R, Pinto RS (2017) Echo intensity independently predicts functionality in sedentary older men. Muscle Nerve 55:9–15. doi: 10.1002/mus.25168 CrossRefPubMedGoogle Scholar
  18. Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of aging on motor cortex excitability. Neurosci Res 55:74–77. doi: 10.1016/j.neures.2006.02.002 CrossRefPubMedGoogle Scholar
  19. Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A (2009) Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol 35:443–446. doi: 10.1016/j.ultrasmedbio.2008.09.016 CrossRefPubMedGoogle Scholar
  20. Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS (2012) Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res 26:2577–2584. doi: 10.1519/JSC.0b013e31823dae96 CrossRefPubMedGoogle Scholar
  21. Rantanen T, Guralnik JM, Ferrucci L, Penninx BW, Leveille S, Sipila S, Fried LP (2001) Coimpairments as predictors of severe walking disability in older women. J Am Geriatr Soc 49:21–27CrossRefPubMedGoogle Scholar
  22. Rech A, Radaelli R, Goltz FR, da Rosa LH, Schneider CD, Pinto RS (2014) Echo intensity is negatively associated with functional capacity in older women. Age 36:9708. doi: 10.1007/s11357-014-9708-2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, Frontera WR, Fielding RA (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114:29–39. doi: 10.1007/s00421-013-2728-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE (1993) Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med 12:73–77CrossRefPubMedGoogle Scholar
  25. Rice J, Keogh JWL (2009) Power training: can it improve functional performance in older adults? A systematic review. Int J Exerc Sci 2:131–151Google Scholar
  26. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991SPubMedGoogle Scholar
  27. Scott D, Blizzard L, Fell J, Jones G (2012) Prospective study of self-reported pain, radiographic osteoarthritis, sarcopenia progression, and falls risk in community-dwelling older adults. Arthritis Care Res (Hoboken) 64:30–37. doi: 10.1002/acr.20545 CrossRefGoogle Scholar
  28. Sipila S, Koskinen SOA, Taaffe DR, Takala TES, Cheng SL, Rantanen T, Toivanen J, Suominen H (2004) Determinants of lower-body muscle power in early postmenopausal women. J Am Geriatr Soc 52:939–944CrossRefPubMedGoogle Scholar
  29. Skelton DA, Greig CA, Davies JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23:371–377CrossRefPubMedGoogle Scholar
  30. Taniguchi M, Fukumoto Y, Kobayashi M, Kawasaki T, Maegawa S, Ibuki S, Ichihashi N (2015) Quantity and quality of the lower extremity muscles in women with knee osteoarthritis. Ultrasound Med Biol 41:2567–2574. doi: 10.1016/j.ultrasmedbio.2015.05.014 CrossRefPubMedGoogle Scholar
  31. Wilhelm EN, Rech A, Minozzo F, Radaelli R, Botton CE, Pinto RS (2014) Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age 36:9625. doi: 10.1007/s11357-014-9625-4 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yamada Y, Schoeller DA, Nakamura E, Morimoto T, Kimura M, Oda S (2010) Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 65:510–516. doi: 10.1093/gerona/glq001 CrossRefPubMedGoogle Scholar
  33. Yamada Y, Watanabe Y, Ikenaga M, Yokoyama K, Yoshida T, Morimoto T, Kimura M (2013) Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly. J Appl Physiol 115:812–818. doi: 10.1152/japplphysiol.00010.2013 CrossRefPubMedGoogle Scholar
  34. Yamada Y, Matsuda K, Bjorkman MP, Kimura M (2014) Application of segmental bioelectrical impedance spectroscopy to the assessment of skeletal muscle cell mass in elderly men. Geriatr Gerontol Int 14:129–134. doi: 10.1111/ggi.12212 CrossRefPubMedGoogle Scholar
  35. Yamada Y, Buehring B, Krueger D, Anderson R, Schoeller D, Binkley N (2016a) Electrical properties assessed by segmental bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/glw125 Google Scholar
  36. Yamada Y, Yoshida T, Yokoyama K, Watanabe Y, Miyake M, Yamagata E, Yamada M, Kimura M, Kyoto-Kameoka S (2016b) The extracellular to intracellular water ratio in upper legs is negatively associated with skeletal muscle strength and gait speed in older people. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/glw125 Google Scholar
  37. Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Yoshida H, Suzuki T, Yamamoto S, Ishibashi H, Kawaguchi H, Nakamura K, Akune T (2009) Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 27:620–628. doi: 10.1007/s00774-009-0080-8 CrossRefPubMedGoogle Scholar
  38. Zhu F, Schneditz D, Wang E, Levin NW (1998) Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. J Appl Physiol 85:497–504PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Masashi Taniguchi
    • 1
    • 2
    Email author
  • Yosuke Yamada
    • 3
  • Yoshihiro Fukumoto
    • 4
  • Shinichiro Sawano
    • 1
  • Seigo Minami
    • 5
  • Tome Ikezoe
    • 2
  • Yuya Watanabe
    • 6
  • Misaka Kimura
    • 7
  • Noriaki Ichihashi
    • 2
  1. 1.Division of Physical Therapy, Rehabilitation UnitsShiga University of Medical Science HospitalOtsuJapan
  2. 2.Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Department of Nutritional and Metabolism, National Institute of Health and NutritionNational Institutes of Biomedical Innovation, Health and NutritionTokyoJapan
  4. 4.Faculty of RehabilitationKobe Gakuin UniversityKobeJapan
  5. 5.Department of Occupational Therapy, Faculty of Allied Health SciencesYamato UniversitySuitaJapan
  6. 6.Faculty of Health and Sports ScienceDoshisha UniversityKyotanabeJapan
  7. 7.Department of Health and Sports SciencesKyoto Gakuen UniversityKameokaJapan

Personalised recommendations