European Journal of Applied Physiology

, Volume 117, Issue 6, pp 1257–1265 | Cite as

High intensity interval training does not impair strength gains in response to resistance training in premenopausal women

  • Paulo Gentil
  • Claudio Andre Barbosa de Lira
  • Suedi Gonçalves Cardoso Filho
  • Cauê Vazquez La Scala Teixeira
  • James Steele
  • James Fisher
  • Juliana Alves Carneiro
  • Mário Hebling Campos
Original Article

Abstract

Purpose

To compare the increases in upper- and lower-body muscle strength in premenopausal women performing resistance training (RT) alone or alongside concurrent high-intensity interval training (CT).

Methods

Sixteen women (26–40 years) were randomly assigned into two groups that performed either RT or CT. Both groups performed the same RT program; however, CT performed additional high-intensity interval training (HIIT) on a bicycle ergometer before RT. The study lasted 8 weeks and the participants were tested for ten repetition maximum (10RM) load in elbow flexion (barbell biceps curl) and knee extension exercises pre- and post-intervention. RT was performed with 10–12 repetitions to self-determined repetition maximum in the first four weeks and then progressed to 8–10. During CT, HIIT was performed before RT with six 1-min bouts at 7–8 of perceived subjective exertion (RPE) and then progressed to eight bouts at 9–10 RPE.

Results

Analysis of variance revealed significant increases in upper and lower body strength for both the RT and CT groups. Biceps barbell curl 10RM load increased from 12.9 ± 3.2 kg to 14 ± 1.5 kg in CT (p < 0.05) and from 13 ± 1.8 kg to 15.9 ± 2.5 kg in RT (p < 0.05), with no significant between-groups differences. Knee extension 10RM increase from 31.9 ± 11.6 kg to 37.5 ± 8.5 kg for CT (p < 0.05) and from 30.6 ± 8.6 kg to 41.2 ± 7.4 kg for RT (p < 0.05).

Conclusion

In conclusion, performing HIIT on a cycle ergometer before resistance training does not seem to impair muscle strength increases in the knee extensors or elbow flexors of pre-menopausal women. This information should be considered when prescribing exercise sessions, since both activities may be combined without negative effects in muscle strength.

Keywords

Aerobic training Strength training Resistance exercise Intermittent training Muscle fitness 

Abbreviations

1RM

1 Maximum repetition

10RM

10 Maximum repetitions

Akt

Protein kinase B

AMPK

AMP kinase

ANOVA

Analysis of variance

AT

Aerobic training

CT

Concurrent training

FoxO

Forkhead box O3

HIIT

High intensity interval training

ICC

Intra-class coefficient

LSD

Least significant difference

mTOR

Mammalian target of rapamycin

PI3K

Phosphatidylinositol 3 kinase

RM

Repetitions maximum

RPE

Rate of perceived exertion

RT

Resistance training

SEM

Standard error of the mean

SKF

Skinfold-thickness

VO2max

Maximum oxygen consumption

Ʃ3SKF

Sum of three skinfolds

References

  1. Apro W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, Blomstrand E (2015) Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab 308(6):E470–E481. doi:10.1152/ajpendo.00486.2014 CrossRefPubMedGoogle Scholar
  2. Astorino TA, Allen RP, Roberson DW, Jurancich M, Lewis R, McCarthy K, Trost E (2011) Adaptations to high-intensity training are independent of gender. Eur J Appl Physiol 111(7):1279–1286. doi:10.1007/s00421-010-1741-y CrossRefPubMedGoogle Scholar
  3. Astorino TA, Schubert MM, Palumbo E, Stirling D, McMillan DW (2013) Effect of two doses of interval training on maximal fat oxidation in sedentary women. Med Sci Sports Exerc 45(10):1878–1886. doi:10.1249/MSS.0b013e3182936261 CrossRefPubMedGoogle Scholar
  4. Astorino TA, Edmunds RM, Clark A, King L, Gallant RM, Namm S, Fischer A, Wood KA (2016) High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000001099 Google Scholar
  5. Baar K (2014) Using molecular biology to maximize concurrent training. Sports Med 44(Suppl 2):S117–S125. doi:10.1007/s40279-014-0252-0 CrossRefPubMedGoogle Scholar
  6. Beck TW (2013) The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res 27(8):2323–2337. doi:10.1519/JSC.0b013e318278eea0 CrossRefPubMedGoogle Scholar
  7. Borba-Pinheiro CJ, Dantas EH, Vale RG, Drigo AJ, Carvalho MC, Tonini T, Meza EI, Figueiredo NM (2016) Resistance training programs on bone related variables and functional independence of postmenopausal women in pharmacological treatment: a randomized controlled trial. Arch Gerontol Geriatr 65:36–44. doi:10.1016/j.archger.2016.02.010 CrossRefPubMedGoogle Scholar
  8. Boutcher SH (2011) High-intensity intermittent exercise and fat loss. J Obes 2011:868305. doi:10.1155/2011/868305 CrossRefPubMedGoogle Scholar
  9. Brzycki MA (1993) Strength testing: predicting a one-rep max from repetitions to fatigue. JOPERD 64(1):88–90Google Scholar
  10. Buckner SL, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Dankel SJ, Loenneke JP (2017) Determining strength: a case for multiple methods of measurement. Sports Med 47(2):193–195. doi:10.1007/s40279-016-0580-3 CrossRefPubMedGoogle Scholar
  11. Cadore EL, Pinto RS, Lhullier FL, Correa CS, Alberton CL, Pinto SS, Almeida AP, Tartaruga MP, Silva EM, Kruel LF (2010) Physiological effects of concurrent training in elderly men. Int J Sports Med 31(10):689–697. doi:10.1055/s-0030-1261895 CrossRefPubMedGoogle Scholar
  12. Cadore EL, Izquierdo M, Alberton CL, Pinto RS, Conceicao M, Cunha G, Radaelli R, Bottaro M, Trindade GT, Kruel LF (2012) Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol 47(2):164–169. doi:10.1016/j.exger.2011.11.013 CrossRefPubMedGoogle Scholar
  13. Cantrell GS, Schilling BK, Paquette MR, Murlasits Z (2014) Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur J Appl Physiol 114(4):763–771. doi:10.1007/s00421-013-2811-8 CrossRefPubMedGoogle Scholar
  14. Carpinelli RN (2011) Assessment of one repetition maximum (1RM) and 1RM prediction equations: are the really necessary? Med Sport 15(2):91–102CrossRefGoogle Scholar
  15. Coetsee C, Terblanche E (2015) The time course of changes induced by resistance training and detrainingon muscular and physical function in older adults. Eur Rev Aging Phys Act 12:7. doi:10.1186/s11556-015-0153-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763CrossRefPubMedGoogle Scholar
  17. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA (2009) Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(5):R1441–R1451. doi:10.1152/ajpregu.00351.2009 CrossRefPubMedGoogle Scholar
  18. Farinatti PT, Geraldes AA, Bottaro MF, Lima MV, Albuquerque RB, Fleck SJ (2013) Effects of different resistance training frequencies on the muscle strength and functional performance of active women older than 60 years. J Strength Cond Res 27(8):2225–2234. doi:10.1519/JSC.0b013e318278f0db CrossRefPubMedGoogle Scholar
  19. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263(22):3029–3034CrossRefPubMedGoogle Scholar
  20. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330(25):1769–1775CrossRefPubMedGoogle Scholar
  21. Fisher J, Steele J (2014) Questioning the resistance/aerobic training dichotomy: a commentary on physiological adaptations determined by effort rather than exercise modality. J Hum Kinet 44:137–142. doi:10.2478/hukin-2014-0119 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fisher J, Steele J, Smith D (2016) High- and low-load resistance training: interpretation and practical application of current research findings. Sports Med. doi:10.1007/s40279-016-0602-1 Google Scholar
  23. Fisher J, Steele J, Smith D (2017) High- and low-load resistance training: interpretation and practical application of current research findings. Sports Med 47(3):393–400. doi:10.1007/s40279-016-0602-1 CrossRefPubMedGoogle Scholar
  24. Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64(3):1038–1044PubMedGoogle Scholar
  25. Gentil P, Bottaro M (2010) Influence of supervision ratio on muscle adaptations to resistance training in nontrained subjects. J Strength Cond Res 24(3):639–643. doi:10.1519/JSC.0b013e3181ad3373 CrossRefPubMedGoogle Scholar
  26. Gentil P, Bottaro M (2013) Effects of training attendance on muscle strength of young men after 11 weeks of resistance training. Asian J Sports Med 4(2):101–106CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gentil P, Del Vecchio FB, Paoli A, Schoenfeld BJ, Bottaro M (2017) Isokinetic dynamometry and 1RM tests produce conflicting results for assessing alterations in muscle strength. J Hum Kinet 56:19–27CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gergley JC (2009) Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res 23(3):979–987. doi:10.1519/JSC.0b013e3181a0629d CrossRefPubMedGoogle Scholar
  29. Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 39(3):409–412. doi:10.1139/apnm-2013-0187 CrossRefPubMedGoogle Scholar
  30. Gray SR, Ferguson C, Birch K, Forrest LJ, Gill JM (2016) High-intensity interval training: key data needed to bridge the gap from laboratory to public health policy. Br J Sports Med 50(20):1231–1232. doi:10.1136/bjsports-2015-095705 CrossRefPubMedGoogle Scholar
  31. Henessy LC, Watson AWS (1994) The interference effects of training for strength and endurance simultaneously. J Strength and Cond Res 8(1):12–19Google Scholar
  32. Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45(2–3):255–263CrossRefPubMedGoogle Scholar
  33. Keating SE, Machan EA, O’Connor HT, Gerofi JA, Sainsbury A, Caterson ID, Johnson NA (2014) Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J Obes 2014:834865. doi:10.1155/2014/834865 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kiens B, Richter EA (1998) Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Physiol 275(2 Pt 1):E332–E337PubMedGoogle Scholar
  35. Kikuchi N, Yoshida S, Okuyama M, Nakazato K (2016) The effect of high-intensity interval cycling sprints subsequent to arm-curl exercise on upper-body muscle strength and hypertrophy. J Strength Cond Res 30(8):2318–2323. doi:10.1519/JSC.0000000000001315 CrossRefPubMedGoogle Scholar
  36. Kong Z, Fan X, Sun S, Song L, Shi Q, Nie J (2016) Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: a randomized controlled trial. PLoS ONE 11(7):e0158589. doi:10.1371/journal.pone.0158589 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee A, Craig BW, Lucas J, Pohlman R, Stelling H (1990) The effect of endurance training, weight training and a combination of endurance and weight training upon the blood lipid profile or young male subjects. J Strength Cond Res 4(3):68–75Google Scholar
  38. Lee CL, Hsu WC, Cheng CF (2017) Physiological adaptations to sprint interval training with matched exercise volume. Med Sci Sports Exerc 49(1):86–95. doi:10.1249/MSS.0000000000001083 CrossRefPubMedGoogle Scholar
  39. Leveritt M, Abernethy P, Barry B, Logan P (1999) Concurrent strength and endurance training. A review. Sports Med 28(6):413–427CrossRefPubMedGoogle Scholar
  40. Lohman TG, Roche AF, Martorell F (eds) (1988) Anthropometric standardization reference manual. Human Kinetics Books, ChampaignGoogle Scholar
  41. Longland TM, Oikawa SY, Mitchell CJ, Devries MC, Phillips SM (2016) Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr 103(3):738–746. doi:10.3945/ajcn.115.119339 CrossRefPubMedGoogle Scholar
  42. McCarthy J, Pozniak M, Agre J (2002) Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc 34(3):511–519CrossRefPubMedGoogle Scholar
  43. Murach KA, Bagley JR (2016) Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med 46(8):1029–1039. doi:10.1007/s40279-016-0496-y CrossRefPubMedGoogle Scholar
  44. NSCA (2016) Essentials of strength training and conditioning, 4th edn. Human Kinetics, ChampaignGoogle Scholar
  45. Ozaki H, Loenneke JP, Thiebaud RS, Abe T (2015) Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms. Acta Physiol Hung 102(1):1–22. doi:10.1556/APhysiol.102.2015.1.1 CrossRefPubMedGoogle Scholar
  46. Panissa VL, Tricoli VA, Julio UF, Ribeiro N, de Azevedo Neto RM, Carmo EC, Franchini E (2015) Acute effect of high-intensity aerobic exercise performed on treadmill and cycle ergometer on strength performance. J Strength Cond Res 29(4):1077–1082. doi:10.1519/JSC.0000000000000706 CrossRefPubMedGoogle Scholar
  47. Panissa VL, Cal Abad CC, Julio UF, Andreato LV, Franchini E (2016) High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance. Front Physiol 7:81. doi:10.3389/fphys.2016.00081 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paoli A (2012) Resistance training: the multifaceted side of exercise. Am J Physiol Endocrinol Metab 302(3):E387. doi:10.1152/ajpendo.00541.2011 CrossRefPubMedGoogle Scholar
  49. Paoli A, Bianco A (2012) Not all exercises are created equal. Am J Cardiol 109(2):305. doi:10.1016/j.amjcard.2011.10.011 CrossRefPubMedGoogle Scholar
  50. Paoli A, Pacelli F, Bargossi AM, Marcolin G, Guzzinati S, Neri M, Bianco A, Palma A (2010) Effects of three distinct protocols of fitness training on body composition, strength and blood lactate. J Sports Med Phys Fit 50(1):43–51Google Scholar
  51. Paoli A, Pacelli QF, Moro T, Marcolin G, Neri M, Battaglia G, Sergi G, Bolzetta F, Bianco A (2013) Effects of high-intensity circuit training, low-intensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. Lipids Health Dis 12:131. doi:10.1186/1476-511X-12-131 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Philp A, Hamilton DL, Baar K (2011) Signals mediating skeletal muscle remodeling by resistance exercise: pI3-kinase independent activation of mTORC1. J Appl Physiol 110(2):561–568. doi:10.1152/japplphysiol.00941.2010 CrossRefPubMedGoogle Scholar
  53. Reynolds JM, Gordon TJ, Robergs RA (2006) Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res 20(3):584–592PubMedGoogle Scholar
  54. Safiyari-Hafizi H, Taunton J, Ignaszewski A, Warburton DE (2016) The health benefits of a 12-week home-based interval training cardiac rehabilitation program in patients with heart failure. Can J Cardiol 32(4):561–567. doi:10.1016/j.cjca.2016.01.031 CrossRefPubMedGoogle Scholar
  55. Sale DG, MacDougall JD, Jacobs I, Garner S (1990) Interaction between concurrent strength and endurance training. J Appl Physiol 68(1):260–270PubMedGoogle Scholar
  56. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiol 23(3):160CrossRefGoogle Scholar
  57. Seidelin K, Nyberg M, Piil P, Jorgensen NR, Hellsten Y, Bangsbo J (2017) Adaptations with intermittent exercise training in post- and premenopausal women. Med Sci Sports Exerc 49(1):96–105. doi:10.1249/MSS.0000000000001071 CrossRefPubMedGoogle Scholar
  58. Silva RF, Cadore EL, Kothe G, Guedes M, Alberton CL, Pinto SS, Pinto RS, Trindade G, Kruel LF (2012) Concurrent training with different aerobic exercises. Int J Sports Med 33(8):627–634. doi:10.1055/s-0031-1299698 CrossRefPubMedGoogle Scholar
  59. Simao R, Lemos A, Salles B, Leite T, Oliveira E, Rhea M, Reis VM (2011) The influence of strength, flexibility, and simultaneous training on flexibility and strength gains. J Strength Cond Res 25(5):1333–1338. doi:10.1519/JSC.0b013e3181da85bf CrossRefPubMedGoogle Scholar
  60. Steele J, Fisher J, Giessing J, Gentil P (2017) Clarity in reporting terminology and definitions of set end points in resistance training. Muscle Nerve. doi:10.1002/mus.25557 Google Scholar
  61. Wens I, Dalgas U, Vandenabeele F, Verboven K, Hansen D, Deckx N, Cools N, Eijnde BO (2016) High intensity aerobic and resistance exercise can improve glucose tolerance in persons with multiple sclerosis: a randomized controlled trial. Am J Phys Med Rehabil. doi:10.1097/PHM.0000000000000563 Google Scholar
  62. Weston KS, Wisloff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–1234. doi:10.1136/bjsports-2013-092576 CrossRefPubMedGoogle Scholar
  63. Whyte LJ, Ferguson C, Wilson J, Scott RA, Gill JM (2013) Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism 62(2):212–219. doi:10.1016/j.metabol.2012.07.019 CrossRefPubMedGoogle Scholar
  64. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC (2012) Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26(8):2293–2307. doi:10.1519/JSC.0b013e31823a3e2d CrossRefPubMedGoogle Scholar
  65. Wisloff U, Ellingsen O, Kemi OJ (2009) High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev 37(3):139–146. doi:10.1097/JES.0b013e3181aa65fc CrossRefPubMedGoogle Scholar
  66. Zanchi NE, Lancha AH (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102(3):253–263CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Paulo Gentil
    • 1
  • Claudio Andre Barbosa de Lira
    • 1
  • Suedi Gonçalves Cardoso Filho
    • 1
  • Cauê Vazquez La Scala Teixeira
    • 2
  • James Steele
    • 3
  • James Fisher
    • 3
  • Juliana Alves Carneiro
    • 1
  • Mário Hebling Campos
    • 1
  1. 1.Laboratório de Avaliação do Movimento Humano/FEFD, Faculdade de Educação Física e DançaUniversidade Federal de GoiasGoiâniaBrazil
  2. 2.Universidade de São Paulo/Campus Baixada SantistaSantosBrazil
  3. 3.Sport Science Laboratory, Centre for Health, Exercise and Sport ScienceSouthampton Solent UniversitySouthamptonUK

Personalised recommendations