European Journal of Applied Physiology

, Volume 117, Issue 5, pp 1005–1015 | Cite as

The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect

  • Jakob D. LauverEmail author
  • Trent E. Cayot
  • Timothy Rotarius
  • Barry W. Scheuermann
Original Article



To examine the effect of low-intensity eccentric contractions with and without blood flow restriction (BFR) on microvascular oxygenation, neuromuscular activation, and the repeated bout effect (RBE).


Participants were randomly assigned to either low-intensity (LI), low-intensity with BFR (LI-BFR), or a control (CON) group. Participants in LI and LI-BFR performed a preconditioning bout of low-intensity eccentric exercise prior to about of maximal eccentric exercise. Participants reported 24, 48, 72, and 96 h later to assess muscle damage and function. Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) were used to measure neuromuscular activation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin] ([THC]) during the preconditioning bout, respectively.


During set-2, LI-BFR resulted in greater activation of the VM-RMS (47.7 ± 11.5% MVIC) compared to LI (67.0 ± 20.0% MVIC), as well as during set-3 (p < 0.05). LI-BFR resulted in a greater change in deoxy-[Hb + Mb] compared to LI during set-2 (LI-BFR 13.1 ± 5.2 µM, LI 6.7 ± 7.9 µM), set-3 (LI-BFR 14.6 ± 6 µM, LI 6.9 ± 7.4 µM), and set-4 (p < 0.05). [THC] was higher during LI-BFR compared to LI (p < 0.05). All groups showed a decrease in MVIC torque immediately after maximal exercise (LI 74.2 ± 14.1%, LI-BFR 75 ± 5.1%, CON 53 ± 18.6%). At 24, 48, 72, and 96 h post maximal eccentric exercise, LI and LI-BFR force deficit was not different from baseline.


This study suggests that the neuromuscular and deoxygenation (i.e., metabolic stress) responses were considerably different between LI and LI-BFR groups; however, these differences did not lead to improvements in the RBE inferred by performing LI and LI-BFR.


Blood flow restriction Repeated bout effect Near-infrared spectroscopy 



Analysis of variance


Blood flow restriction



deoxy-[Hb + Mb]



Exercise-induced muscle damage


Low intensity


Low intensity with blood flow restriction


Maximal voluntary isometric contraction


Near-infrared spectroscopy


Repeated bout effect


Repetition maximum


Root mean square


Standard deviation


Surface electromyography


Total hemoglobin concentration



The authors would like to thank the subjects for volunteering to participate in this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100(5):1460–1466. doi: 10.1152/japplphysiol.01267.2005 CrossRefPubMedGoogle Scholar
  2. Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG (2012) Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging 32(4):247–252. doi: 10.1111/j.1475-097X.2012.01126.x CrossRefPubMedGoogle Scholar
  3. Azuma K, Homma S, Kagaya A (2000) Oxygen supply-consumption balance in the thigh muscles during exhausting knee-extension exercise. J Biomed Opt 5(1):97–101. doi: 10.1117/1.429974 CrossRefPubMedGoogle Scholar
  4. Bernardi M, Solomonow M, Baratta RV (1997) Motor unit recruitment strategy of antagonist muscle pair during linearly increasing contraction. Electromyogr Clin Neurophysiol 37(1):3–12PubMedGoogle Scholar
  5. Bilodeau M, Cincera M, Gervais S, Arsenault AB, Gravel D, Lepage Y, McKinley P (1995) Changes in the electromyographic spectrum power distribution caused by a progressive increase in the force level. Eur J Appl Physiol Occup Physiol 71(2–3):113–123CrossRefPubMedGoogle Scholar
  6. Cayot TE, Lauver JD, Silette CR, Scheuermann BW (2016) Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. Clin Physiol Funct Imaging 36(4):298–305. doi: 10.1111/cpf.12228 CrossRefPubMedGoogle Scholar
  7. Chen TC, Chen HL, Lin MJ, Wu CJ, Nosaka K (2010) Potent protective effect conferred by four bouts of low-intensity eccentric exercise. Med Sci Sport Exerc 42(5):1004–1012. doi: 10.1249/Mss.0b013e3181c0a818 CrossRefGoogle Scholar
  8. Chen HL, Nosaka K, Chen TC (2012a) Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol 112(2):555–565. doi: 10.1007/s00421-011-1999-8 CrossRefPubMedGoogle Scholar
  9. Chen HL, Nosaka K, Pearce AJ, Chen TC (2012b) Two maximal isometric contractions attenuate the magnitude of eccentric exercise-induced muscle damage. Appl Physiol Nutr Metab 37(4):680–689. doi: 10.1139/h2012-035 CrossRefPubMedGoogle Scholar
  10. Chen TC, Chen HL, Pearce AJ, Nosaka K (2012c) Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises. Med Sci Sports Exerc 44(11):2090–2098. doi: 10.1249/MSS.0b013e31825f69f3 CrossRefPubMedGoogle Scholar
  11. Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K (2013) Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol 113(4):1005–1015. doi: 10.1007/s00421-012-2517-3 CrossRefPubMedGoogle Scholar
  12. Clark BC, Manini TM, Hoffman RL, Williams PS, Guiler MK, Knutson MJ, McGlynn ML, Kushnick MR (2011) Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports 21(5):653–662. doi: 10.1111/j.1600-0838.2010.01100.x CrossRefPubMedGoogle Scholar
  13. Clarkson PM, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24(5):512–520PubMedGoogle Scholar
  14. Conchola EC, Thompson BJ, Smith DB (2013) Effects of neuromuscular fatigue on the electromechanical delay of the leg extensors and flexors in young and old men. Eur J Appl Physiol 113(9):2391–2399. doi: 10.1007/s00421-013-2675-y CrossRefPubMedGoogle Scholar
  15. Cook CJ, Kilduff LP, Beaven CM (2014) Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform 9(1):166–172. doi: 10.1123/ijspp.2013-0018 CrossRefPubMedGoogle Scholar
  16. Cram JR, Kasman GS, Holtz J (1998) Introduction to surface electromyography. Aspen, GaithersburgGoogle Scholar
  17. Crenshaw AG, Karlsson S, Styf J, Backlund T, Friden J (1995) Knee extension torque and intramuscular pressure of the vastus lateralis muscle during eccentric and concentric activities. Eur J Appl Physiol Occup Physiol 70(1):13–19CrossRefPubMedGoogle Scholar
  18. Cumming KT, Paulsen G, Wernbom M, Ugelstad I, Raastad T (2014) Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiologica 211(4):634–646. doi: 10.1111/apha.12305 CrossRefPubMedGoogle Scholar
  19. Dalton PA, Stokes MJ (1991) Acoustic myography reflects force changes during dynamic concentric and eccentric contractions of the human biceps brachii muscle. Eur J Appl Physiol Occup Physiol 63(6):412–416CrossRefPubMedGoogle Scholar
  20. DeLorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95(1):113–120. doi: 10.1152/japplphysiol.00956.2002 CrossRefPubMedGoogle Scholar
  21. Ebbeling CB, Clarkson PM (1989) Exercise-induced muscle damage and adaptation. Sports Med 7(4):207–234CrossRefPubMedGoogle Scholar
  22. Ferrari M, Binzoni T, Quaresima V (1997) Oxidative metabolism in muscle. Philos Trans R Soc Lond Ser B Biol Sci 352(1354):677–683. doi: 10.1098/rstb.1997.0049 CrossRefGoogle Scholar
  23. Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol Revue canadienne de physiologie appliquee 29(4):463–487PubMedGoogle Scholar
  24. Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4(3):170–176CrossRefPubMedGoogle Scholar
  25. Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Cerretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95(1):149–158. doi: 10.1152/japplphysiol.00695.2002 CrossRefPubMedGoogle Scholar
  26. Hoffman JR, Im J, Rundell KW, Kang J, Nioka S, Spiering BA, Kime R, Chance B (2003) Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sports Exerc 35(11):1929–1934. doi: 10.1249/01.MSS.0000093613.30362.DF CrossRefPubMedGoogle Scholar
  27. Iida H, Kurano M, Takano H, Kubota N, Morita T, Meguro K, Sato Y, Abe T, Yamazaki Y, Uno K, Takenaka K, Hirose K, Nakajima T (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100(3):275–285. doi: 10.1007/s00421-007-0430-y CrossRefPubMedGoogle Scholar
  28. Jakeman JR, Eston RG (2013) Joint angle-torque characteristics of the knee extensors following eccentric exercise-induced muscle damage in young, active women. J Exerc Sci Fit 11(1):50–56. doi: 10.1016/j.jesf.2013.05.001 CrossRefGoogle Scholar
  29. Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108(1):147–155. doi: 10.1007/s00421-009-1204-5 CrossRefPubMedGoogle Scholar
  30. Koh TJ, Escobedo J (2004) Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol 286(3):C713–C722. doi: 10.1152/ajpcell.00341.2003 CrossRefPubMedGoogle Scholar
  31. Komi PV, Buskirk ER (1972) Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 15(4):417–434. doi: 10.1080/00140137208924444 CrossRefPubMedGoogle Scholar
  32. Kubo K, Tsunoda N, Kanehisa H, Fukunaga T (2004) Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur J Appl Physiol 91(2–3):349–352. doi: 10.1007/s00421-003-1025-x CrossRefPubMedGoogle Scholar
  33. Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T (2006) Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 22(2):112–119CrossRefPubMedGoogle Scholar
  34. Lavender AP, Nosaka K (2008) A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. J Sci Med Sport 11(3):291–298. doi: 10.1016/j.jsams.2007.03.005 CrossRefPubMedGoogle Scholar
  35. Lieber RL, Friden J (1993) Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol (1985) 74(2):520–526Google Scholar
  36. Locke M, Noble EG (1995) Stress proteins: the exercise response. Can J Appl Physiol Revue canadienne de physiologie appliquee 20(2):155–167PubMedGoogle Scholar
  37. Loenneke J, Fahs C, Rossow L, Sherk V, Thiebaud R, Abe T, Bemben D, Bemben M (2012a) Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol 112:2903–2912CrossRefPubMedGoogle Scholar
  38. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG (2012b) The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses 78(1):151–154. doi: 10.1016/j.mehy.2011.10.014 CrossRefPubMedGoogle Scholar
  39. Lowery RP, Joy JM, Loenneke JP, de Souza EO, Machado M, Dudeck JE, Wilson JM (2014) Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging 34(4):317–321. doi: 10.1111/cpf.12099 CrossRefPubMedGoogle Scholar
  40. Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N (2008) Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 40(2):258–263. doi: 10.1249/mss.0b013e31815c6d7e CrossRefPubMedGoogle Scholar
  41. Manimmanakorn A, Manimmanakorn N, Taylor R, Draper N, Billaut F, Shearman JP, Hamlin MJ (2013) Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol 113(7):1767–1774. doi: 10.1007/s00421-013-2605-z CrossRefPubMedGoogle Scholar
  42. McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280(3):C621–C627PubMedGoogle Scholar
  43. McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13(2):88–97CrossRefPubMedGoogle Scholar
  44. McHugh MP, Tyler TF, Greenberg SC, Gleim GW (2002) Differences in activation patterns between eccentric and concentric quadriceps contractions. J Sports Sci 20(2):83–91. doi: 10.1080/026404102317200792 CrossRefPubMedGoogle Scholar
  45. Miura H, McCully K, Hong L, Nioka S, Chance B (2001) Regional difference of muscle oxygen saturation and blood volume during exercise determined by near infrared imaging device. Jpn J Physiol 51(5):599–606CrossRefPubMedGoogle Scholar
  46. Miyamoto N, Wakahara T, Ema R, Kawakami Y (2013) Non-uniform muscle oxygenation despite uniform neuromuscular activity within the vastus lateralis during fatiguing heavy resistance exercise. Clin Physiol Funct Imaging 33(6):463–469. doi: 10.1111/cpf.12054 PubMedGoogle Scholar
  47. Moritani T, Muramatsu S, Muro M (1987) Activity of motor units during concentric and eccentric contractions. Am J Phys Med 66(6):338–350PubMedGoogle Scholar
  48. Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64(6):552–556CrossRefPubMedGoogle Scholar
  49. Noble EG, Milne KJ, Melling CW (2008) Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 33(5):1050–1065. doi: 10.1139/H08-069 CrossRefPubMedGoogle Scholar
  50. Nosaka K, Clarkson PM (1995) Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc 27(9):1263–1269CrossRefPubMedGoogle Scholar
  51. Park S, Kim J, Choi H, Kim H, Beekley M, Nho H (2010) Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur J Appl Physiol 109:591–600CrossRefPubMedGoogle Scholar
  52. Paulsen G, Lauritzen F, Bayer ML, Kalhovde JM, Ugelstad I, Owe SG, Hallen J, Bergersen LH, Raastad T (2009) Subcellular movement and expression of HSP27, alphaB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol 107(2):570–582. doi: 10.1152/japplphysiol.00209.2009 CrossRefPubMedGoogle Scholar
  53. Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD (2009) The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med 43(8):556–568CrossRefPubMedGoogle Scholar
  54. Schoenfeld BJ (2012) Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res Natl Strength Cond Assoc 26(5):1441–1453. doi: 10.1519/JSC.0b013e31824f207e CrossRefGoogle Scholar
  55. Scott BR, Loenneke JP, Slattery KM, Dascombe BJ (2015) Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med 45(3):313–325. doi: 10.1007/s40279-014-0288-1 CrossRefPubMedGoogle Scholar
  56. Sieljacks P, Matzon A, Wernbom M, Ringgaard S, Vissing K, Overgaard K (2016) Muscle damage and repeated bout effect following blood flow restricted exercise. Eur J Appl Physiol 116(3):513–525. doi: 10.1007/s00421-015-3304-8 CrossRefPubMedGoogle Scholar
  57. Starbuck C, Eston RG (2012) Exercise-induced muscle damage and the repeated bout effect: evidence for cross transfer. Eur J Appl Physiol 112(3):1005–1013. doi: 10.1007/s00421-011-2053-6 CrossRefPubMedGoogle Scholar
  58. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 108:1563–1567CrossRefPubMedGoogle Scholar
  59. Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, Hirabayashi K, Takahashi M, Morita N, Horiuchi M, Kinugawa S, Tsutsui H (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112(11):3915–3920. doi: 10.1007/s00421-012-2377-x CrossRefPubMedPubMedCentralGoogle Scholar
  60. Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005a) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95(1):65–73. doi: 10.1007/s00421-005-1389-1 CrossRefPubMedGoogle Scholar
  61. Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005b) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95:65–73CrossRefPubMedGoogle Scholar
  62. Takano H, Morita T, Iida H, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Furuichi T, Eto F, Nagai R, Sato Y, Nakajima T (2005c) Effects of low-intensity “KAATSU” resistance exercise on hemodynamic and growth hormone responses. Int J Kaatsu Train Res 1:13–18CrossRefGoogle Scholar
  63. Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86(4):308–314CrossRefPubMedGoogle Scholar
  64. Takarada Y, Tsuruta T, Ishii N (2004) Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54(6):585–592. doi: 10.2170/jjphysiol.54.585 CrossRefPubMedGoogle Scholar
  65. Thiebaud RS, Yasuda T, Loenneke JP, Abe T (2013) Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv Med Appl Sci 5(2):53–59. doi: 10.1556/IMAS.5.2013.2.1 PubMedPubMedCentralGoogle Scholar
  66. Thiebaud RS, Loenneke JP, Fahs CA, Kim D, Ye X, Abe T, Nosaka K, Bemben MG (2014) Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol Hung 101(2):150–157. doi: 10.1556/APhysiol.101.2014.2.3 CrossRefPubMedGoogle Scholar
  67. Thompson WR, Gordon NF, Pescatello LS (2010) ACSM’s guidelines for exercise testing and prescription. 8th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  68. Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T (2012) Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol 112(6):2051–2063. doi: 10.1007/s00421-011-2172-0 CrossRefPubMedGoogle Scholar
  69. Westing SH, Seger JY (1989) Eccentric and concentric torque-velocity characteristics, torque output comparisons, and gravity effect torque corrections for the quadriceps and hamstring muscles in females. Int J Sports Med 10(3):175–180. doi: 10.1055/s-2007-1024896 CrossRefPubMedGoogle Scholar
  70. Westing SH, Cresswell AG, Thorstensson A (1991) Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol Occup Physiol 62(2):104–108CrossRefPubMedGoogle Scholar
  71. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA (2013) Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res Natl Strength Cond Assoc 27(11):3068–3075. doi: 10.1519/JSC.0b013e31828a1ffa CrossRefGoogle Scholar
  72. Yasuda T, Abe T, Brechue WF, Iida H, Takano H, Meguro K, Kurano M, Fujita S, Nakajima T (2010) Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 59(10):1510–1519. doi: 10.1016/j.metabol.2010.01.016 CrossRefPubMedGoogle Scholar
  73. Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T (2011) Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 111:2525–2533CrossRefPubMedGoogle Scholar
  74. Yasuda T, Loenneke JP, Thiebaud RS, Abe T (2012) Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. Plos One 7(12):e52843. doi: 10.1371/journal.pone.0052843 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jakob D. Lauver
    • 1
    • 2
    Email author
  • Trent E. Cayot
    • 1
    • 3
  • Timothy Rotarius
    • 1
  • Barry W. Scheuermann
    • 1
  1. 1.Department of Exercise and Rehabilitative SciencesUniversity of ToledoToledoUSA
  2. 2.Department of Exercise Science and Athletic TrainingAdrian CollegeAdrianUSA
  3. 3.Division of Mathematics, Computer and Natural SciencesOhio Dominican UniversityColumbusUSA

Personalised recommendations