European Journal of Applied Physiology

, Volume 117, Issue 4, pp 787–794 | Cite as

Acute effects of post-absorptive and postprandial moderate exercise on markers of inflammation in hyperglycemic individuals

  • Håvard Nygaard
  • Gunnar Slettaløkken Falch
  • Jon Elling Whist
  • Ivana Hollan
  • Stian Ellefsen
  • Gerd Holmboe-Ottesen
  • Bent R. Rønnestad
  • Arne T. Høstmark
Original Article

Abstract

Purpose

Systemic inflammation is involved in the development of several diseases, including cardiovascular disease and type 2 diabetes. It is known that vigorous exercise affects systemic inflammation, but less is known about exercise at lower intensities. Hyperglycemia can also entail pro-inflammatory responses; however, postprandial hyperglycemia is blunted if the meal is followed by exercise. Hypotheses were: (1) moderate physical exercise acutely affects levels of C-reactive protein (CRP) and serum soluble vascular cell adhesion molecule 1 (sVCAM-1) in hyperglycemic individuals and (2) the effect depends on whether the activity is performed in a post-absorptive or postprandial state.

Methods

Twelve participants diagnosed with hyperglycemia, but not using anti-diabetic medication, underwent three test days in a randomized cross-over study; 1 control day without exercise, 1 day with 60 min of treadmill walking ending 30 min before breakfast, and 1 day with an identical bout of activity 30 min after the start of breakfast. Food intake was strictly standardized and venous blood for CRP, and sVCAM-1 analysis was sampled at standardized timepoints during the first 3.5 h after breakfast and once 24 h later.

Results

Merged data from the two exercise days showed that sVCAM-1 increased from baseline (4 ± 16 ng/mL) compared to the control condition (−28 ± 47 ng/mL, ES = 0.7, p = 0.024). There was no statistically significant difference in changes in sVCAM-1 levels between the two exercise test days. Exercise did not affect CRP values.

Conclusion

Moderate exercise increases sVCAM-1 in hyperglycemic individuals, whereas it does not affect CRP.

Keywords

Physical activity Blood CRP sVCAM-1 Atherosclerosis Life style 

Abbreviations

BrEx

Test day with exercise after breakfast

CON

Control day

CRP

C-reactive protein

ES

Effect size

ExBr

Test day with exercise before breakfast

HbA1c

Glycosylated hemoglobin

HDL

High density lipoprotein

LDL

Low density lipoprotein

RPE

Rate of perceived exertion

sVCAM-1

Soluble vascular cell adhesion molecule 1

Supplementary material

421_2017_3576_MOESM1_ESM.pdf (589 kb)
Supplementary material 1 (PDF 588 KB)
421_2017_3576_MOESM2_ESM.pdf (149 kb)
Supplementary material 2 (PDF 148 KB)

References

  1. Allen J, Sun Y, Woods JA (2015) Exercise and the regulation of inflammatory responses. Prog Mol Biol Transl Sci 135:337–354. doi:10.1016/bs.pmbts.2015.07.003 CrossRefPubMedGoogle Scholar
  2. Bartzeliotou AI, Margeli AP, Tsironi M, Skenderi K, Bacoula C, Chrousos GP, Papassotiriou I (2007) Circulating levels of adhesion molecules and markers of endothelial activation in acute inflammation induced by prolonged brisk exercise. Clin Biochem 40:765–770. doi:10.1016/j.clinbiochem.2007.01.013 CrossRefPubMedGoogle Scholar
  3. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  4. Brevetti G et al (2001) Exercise increases soluble adhesion molecules ICAM-1 and VCAM-1 in patients with intermittent claudication. Clin Hemorheol Microcirc 24:193–199PubMedGoogle Scholar
  5. Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7CrossRefPubMedGoogle Scholar
  6. Colberg SR, Zarrabi L, Bennington L, Nakave A, Thomas Somma C, Swain DP, Sechrist SR (2009) Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Assoc 10:394–397CrossRefGoogle Scholar
  7. Cook-Mills JM, Marchese ME, Abdala-Valencia H (2011) Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Sign 15:1607–1638. doi:10.1089/ars.2010.3522 CrossRefGoogle Scholar
  8. Dandona P, Chaudhuri A, Ghanim H, Mohanty P (2009) Insulin as an anti-inflammatory and antiatherogenic modulator. J Am Coll Cardiol 53:S14–S20. doi:10.1016/j.jacc.2008.10.038 CrossRefPubMedGoogle Scholar
  9. Davis J, Murphy M, Trinick T, Duly E, Nevill A, Davison G (2008) Acute effects of walking on inflammatory and cardiovascular risk in sedentary post-menopausal women. J Sports Sci 26:303–309. doi:10.1080/02640410701552906 CrossRefPubMedGoogle Scholar
  10. Derave W, Mertens A, Muls E, Pardaens K, Hespel P (2007) Effects of post-absorptive and postprandial exercise on glucoregulation in metabolic syndrome. Obesity (Silver Spring, Md) 15:704–711. doi:10.1038/oby.2007.548 CrossRefGoogle Scholar
  11. Devlin JT, Horton ES (1985) Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes 34:973–979CrossRefPubMedGoogle Scholar
  12. Emerging Risk Factors C et al (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375:132–140. doi:10.1016/S0140-6736(09)61717-7 CrossRefGoogle Scholar
  13. Gabriel B, Ratkevicius A, Gray P, Frenneaux MP, Gray SR (2012) High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress. Clin Sci (Lond) 123:313–321. doi:10.1042/CS20110600 CrossRefGoogle Scholar
  14. Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 94:3171–3182. doi:10.1210/jc.2008-2534 CrossRefPubMedGoogle Scholar
  15. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13. doi:10.1249/MSS.0b013e31818cb278 CrossRefPubMedGoogle Scholar
  16. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863. doi:10.3389/fpsyg.2013.00863 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lara Fernandes J et al (2011) Acute and chronic effects of exercise on inflammatory markers and B-type natriuretic peptide in patients with coronary artery disease. Clin Res Cardiol 100:77–84. doi:10.1007/s00392-010-0215-x CrossRefPubMedGoogle Scholar
  18. Libby P, Crea F (2010) Clinical implications of inflammation for cardiovascular primary prevention. Eur Heart J 31:777–783. doi:10.1093/eurheartj/ehq022 CrossRefPubMedGoogle Scholar
  19. Markovitch D, Tyrrell RM, Thompson D (2008) Acute moderate-intensity exercise in middle-aged men has neither an anti- nor proinflammatory effec.t. J Appl Physiol 105:260–265. doi:10.1152/japplphysiol.00096.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. McArdle WD, Katch FI, Katch VL (2010) Exercise physiology. 7 edn. Wolters Kluwer, Lippincott Williams & WilkinsGoogle Scholar
  21. Mendham AE, Donges CE, Liberts EA, Duffield R (2011) Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, overweight population. Eur J Appl Physiol 111:1035–1045. doi:10.1007/s00421-010-1724-z CrossRefPubMedGoogle Scholar
  22. Monnier L, Colette C, Mas E, Michel F, Cristol JP, Boegner C, Owens DR (2010) Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia 53:562–571. doi:10.1007/s00125-009-1574-6 CrossRefPubMedGoogle Scholar
  23. Nappo F et al (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39:1145–1150CrossRefPubMedGoogle Scholar
  24. Nieman DC (1999) Nutrition, exercise, and immune system function. Clin Sports Med 18:537–548CrossRefPubMedGoogle Scholar
  25. Pigott R, Dillon LP, Hemingway IH, Gearing AJ (1992) Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 187:584–589CrossRefPubMedGoogle Scholar
  26. Price DT, Loscalzo J (1999) Cellular adhesion molecules and atherogenesis. Am J Med 107:85–97CrossRefPubMedGoogle Scholar
  27. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183:259–267. doi:10.1016/j.atherosclerosis.2005.03.015 CrossRefPubMedGoogle Scholar
  28. Sampson MJ, Gopaul N, Davies IR, Hughes DA, Carrier MJ (2002) Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care 25:537–541CrossRefPubMedGoogle Scholar
  29. Semple SJ (2006) C-reactive protein—biological function, cardiovascular disease and physical exercise. South Afr J Sports Med 18:24–28CrossRefGoogle Scholar
  30. Semple SJ, Smith LL, McKune AJ, Neveling N, Wadee A (2004) Alterations in acute-phase reactants (CRP, rheumatoid factor, complement, Factor B, and immune complexes) following an ultramarathon. South Afr J Sports Med 16:17–21CrossRefGoogle Scholar
  31. Smith LL, Anwar A, Fragen M, Rananto C, Johnson R, Holbert D (2000) Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol 82:61–67. doi:10.1007/s004210050652 CrossRefPubMedGoogle Scholar
  32. Standl E, Schnell O, Ceriello A (2011) Postprandial hyperglycemia and glycemic variability: should we care? Diabetes Care 34(Suppl 2):S120–S127. doi:10.2337/dc11-s206 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Weight LM, Alexander D, Jacobs P (1991) Strenuous exercise: analogous to the acute-phase response? Clin Sci (Lond) 81:677–683CrossRefGoogle Scholar
  34. Zuntz N (1901) Ueber die Bedeutung der verschiedenen Nahrstoffe als Erzeuger der Muskelkraft. Archiv fur die gesamte Physiologie des Menschen und der Tiere 83:557–571. doi:10.1007/BF01746509 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Håvard Nygaard
    • 1
  • Gunnar Slettaløkken Falch
    • 1
  • Jon Elling Whist
    • 2
    • 4
  • Ivana Hollan
    • 3
    • 4
    • 5
    • 6
  • Stian Ellefsen
    • 1
  • Gerd Holmboe-Ottesen
    • 7
  • Bent R. Rønnestad
    • 1
  • Arne T. Høstmark
    • 7
  1. 1.Section for Sport ScienceLillehammer University CollegeLillehammerNorway
  2. 2.Department of Medical BiochemistryInnlandet Hospital TrustLillehammerNorway
  3. 3.Hospital for Rheumatic DiseasesLillehammerNorway
  4. 4.Department of ResearchInnlandet Hospital TrustBrumunddalNorway
  5. 5.Division of Rheumatology, Immunology and AllergyBrigham and Women’s HospitalBostonUSA
  6. 6.Harvard Medical SchoolBostonUSA
  7. 7.Department of Community Medicine, Institute of Health and SocietyUniversity of OsloOsloNorway

Personalised recommendations