European Journal of Applied Physiology

, Volume 117, Issue 5, pp 853–866 | Cite as

Post-absorptive muscle protein turnover affects resistance training hypertrophy

  • Paul T. Reidy
  • Michael S. Borack
  • Melissa M. Markofski
  • Jared M. Dickinson
  • Christopher S. Fry
  • Rachel R. Deer
  • Elena Volpi
  • Blake B. RasmussenEmail author
Original Article



Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. Our goal was to determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover.


Healthy young men (n = 31) participated in supervised whole body progressive RET at 60–80% 1 repetition maximum (1-RM), 3 days/week for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET.


RET increased strength (12–40%), LBM (~5%), MT (~15%) and myofiber CSA (~20%) (p < 0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21%, respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r = 0.555, p = 0.003) with the change in muscle thickness.


Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training.


Skeletal muscle Growth Strength training mTORC1 Ribosome biogenesis 





Eukaryotic initiation factor 4E binding protein 1


Amino acids


Fractional synthesis rate


Fractional breakdown rate




Protein KINASE B


Amino acids


Autophagy related 1




Beclin 1, autophagy related


BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like


Branched chain amino acids


Cyclin-dependent kinase inhibitor 1 A, aka (p21, Cip1)


Cyclin-dependent kinase 2


Diacylglycerol kinase, zeta


Essential amino acids


Eukaryotic elongation factor 2


F-box only protein 32, aka MAFbx (muscle atrophy F-box protein and aka (Atrogin-1)


Fractional breakdown rate


Forkhead box O3


Fractional synthesis rate


GABA(A) receptor-associated protein


Gas chromatography-mass spectrometry


Glycogen synthase kinase


Heat shock 70 kDa protein 8


Insulin-like growth factor-1


Institute for Translational Sciences-Clinical Research Center


Lysosomal-associated membrane protein 1


Lysosomal-associated membrane protein 2


Lysosomal-associated membrane protein 3

LC3 α/β

Microtubule-associated protein 1 light chain 3 alpha/beta


Mindbomb E3 ubiquitin protein ligase 2


Microphthalmia-associated transcription factor




Mechanistic target of rapamycin


Mammalian target of rapamycin complex 1


Muscle RING-finger protein-1


Myogenic differentiation 1


Myogenin (myogenic factor 4)


p70 ribosomal S6 kinase 1


Poly(A) binding protein interacting protein 2B


Phosphoinositide-3-kinase, class 3 aka (hVps34)

pre-rRNA 45 S (ETS)

Preribosomal RNA 45 S (external transcribed spacers)


Resistance exercise training


Large ribosomal protein


Ribosomal protein S6 kinase, 70 kDa, polypeptide 1


Ribosomal protein S6




Member 9 of the solute carrier family 38


Transcription factor binding to IGHM enhancer 3


Transcription factor EB




Tumor protein P53


Tracer to tracee ratio


Unc-51 like autophagy activating kinase 1


URB2 ribosome biogenesis 2 homolog



We thank the clinical research staff of the Institute for Translational Sciences-Clinical Research Center at UTMB for assisting in screening and consenting patients and participants and for assisting in data collection. We thank Syed Husaini, MD, for his assistance in subject recruitment, screening and performing muscle biopsies. We also thank, DPT Samantha Dillon, DPT Matthew Nguyen, SPT Benjamin Brightwell, Camille Brightwell and SPT Jennifer Thedinga for their assistance in supervising the exercise training of research participants. We also thank Dr. Marinel M. Ammenheuser for editing the manuscript.

Author contributions

BBR, PTR, and EV designed the research; PTR, MMM, MSB, JMD, CSF, and RRD conducted the research; BBR, EV, PTR, CSF, MMM, RRD, MSB and JMD, reviewed the manuscript; PTR, MSB, and BBR analyzed data; and PTR and BBR wrote the manuscript and had primary responsibility for final content.

Compliance with ethical standards

Conflict of interest

P.T. Reidy, M.S. Borack, M.M. Markofski, J.M. Dickinson, Fry, C.S. R.R. Deer, E. Volpi, B.B. Rasmussen have no conflicts of interest. The authors declare that this study was partially funded by DuPont Nutrition and Health. Representatives from DuPont Nutrition and Health were not involved with data collection and laboratory analysis.

Supplementary material

421_2017_3566_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1245 KB)
421_2017_3566_MOESM2_ESM.docx (172 kb)
Supplementary material 2 (DOCX 173 KB)
421_2017_3566_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 KB)


  1. Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81(6):2509–2516PubMedGoogle Scholar
  2. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6):1196–1208. doi: 10.1016/j.cell.2012.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100–1106. doi: 10.1126/science.1232044 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bergstrom J (1962) Muscle electrolytes in man. Scand J Med Sci Sports 68:1–110Google Scholar
  5. Berlanga JJ, Baass A, Sonenberg N (2006) Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B. Rna 12 (8):1556–1568. doi: 10.1261/rna.106506 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 98(2):482–488. doi: 10.1152/japplphysiol.00895.2004 PubMedGoogle Scholar
  7. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ (2015) Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J 29(11):4485–4496. doi: 10.1096/fj.15-273755 CrossRefPubMedGoogle Scholar
  8. Burd NA, Tang JE, Moore DR, Phillips SM (2009) Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol 106(5):1692–1701. doi: 10.1152/japplphysiol.91351.2008 CrossRefPubMedGoogle Scholar
  9. Costill DL, Fink WJ (1974) Plasma volume changes following exercise and thermal dehydration. J Appl Physiol 37(4):521–525PubMedGoogle Scholar
  10. Cynober LA (2002) Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18(9):761–766CrossRefPubMedGoogle Scholar
  11. Damas F, Phillips S, Vechin FC, Ugrinowitsch C (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45(6):801–807. doi: 10.1007/s40279-015-0320-0 CrossRefPubMedGoogle Scholar
  12. Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrao ME, Jannig PR, Costa LA, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol 594(18):5209–5222. doi: 10.1113/JP272472 CrossRefPubMedGoogle Scholar
  13. Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141(5):856–862. doi: 10.3945/jn.111.139485 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dickinson JM, Drummond MJ, Fry CS, Gundermann DM, Walker DK, Timmerman KL, Volpi E, Rasmussen BB (2013) Rapamycin does not affect post-absorptive protein metabolism in human skeletal muscle. Metabolism 62(1):144–151. doi: 10.1016/j.metabol.2012.07.003 CrossRefPubMedGoogle Scholar
  15. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576 (Pt 2):613–624. doi: 10.1113/jphysiol.2006.113175 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587 (Pt 7):1535–1546. ([pii] jphysiol.2008.163816)CrossRefPubMedPubMedCentralGoogle Scholar
  17. Figueiredo VC, Caldow MK, Massie V, Markworth JF, Cameron-Smith D, Blazevich AJ (2015) Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy. American J Physiol Endocrinol Metab 309(1):E72–E83. doi: 10.1152/ajpendo.00050.2015 CrossRefGoogle Scholar
  18. Fry C, Drummond M, Glynn E, Dickinson J, Gundermann D, Timmerman K, Walker D, Dhanani S, Volpi E, Rasmussen B (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal Muscle 1 (1):11CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Volpi E, Rasmussen BB (2013) Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68(5):599–607. doi: 10.1093/gerona/gls209 CrossRefPubMedGoogle Scholar
  20. Fry CS, Noehren B, Mula J, Ubele MF, Westgate PM, Kern PA, Peterson CA (2014) Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol 592 (Pt 12):2625–2635. doi: 10.1113/jphysiol.2014.271288 PubMedPubMedCentralGoogle Scholar
  21. Gundermann DM, Walker DK, Reidy PT, Borack MS, Dickinson JM, Volpi E, Rasmussen BB (2014) Activation of mTORC1 signaling and protein synthesis in human muscle following blood flow restriction exercise is inhibited by rapamycin. American J Physiol Endocrinol Metab 306(10):E1198–E1204. doi: 10.1152/ajpendo.00600.2013 CrossRefGoogle Scholar
  22. Hulmi JJ, Kovanen V, Selanne H, Kraemer WJ, Hakkinen K, Mero AA (2009a) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37(2):297–308. doi: 10.1007/s00726-008-0150-6 CrossRefPubMedGoogle Scholar
  23. Hulmi JJ, Tannerstedt J, Selanne H, Kainulainen H, Kovanen V, Mero AA (2009b) Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol 106(5):1720–1729. doi: 10.1152/japplphysiol.00087.2009 CrossRefPubMedGoogle Scholar
  24. Kim PL, Staron RS, Phillips SM (2005) Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568 (Pt 1):283–290. ([pii]: jphysiol.2005.093708)CrossRefPubMedPubMedCentralGoogle Scholar
  25. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576 (Pt 3):923–933. doi: 10.1113/jphysiol.2006.116715 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  27. Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, Atherton PJ, Phillips SM (2014) Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One 9(2):e89431. doi: 10.1371/journal.pone.0089431 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moro T, Ebert SM, Adams CM, Rasmussen BB (2016) Amino acid sensing in skeletal muscle. Trends Endocrinol Metab 27(11):796–806. doi: 10.1016/j.tem.2016.06.010 CrossRefPubMedGoogle Scholar
  29. Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol 116(6):693–702. doi: 10.1152/japplphysiol.01366.2013 CrossRefPubMedGoogle Scholar
  30. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273(1 Pt 1):E99–E107PubMedGoogle Scholar
  31. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276(1 Pt 1):E118–E124PubMedGoogle Scholar
  32. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA (2002) Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80(11):1045–1053CrossRefPubMedGoogle Scholar
  33. Pikosky MA, Gaine PC, Martin WF, Grabarz KC, Ferrando AA, Wolfe RR, Rodriguez NR (2006) Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J Nutr 136(2):379–383 ([pii] 136/2/379)PubMedGoogle Scholar
  34. Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB (2015) Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exerc 47(9):1922–1931. doi: 10.1249/MSS.0000000000000605 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rahbek SK, Farup J, Moller AB, Vendelbo MH, Holm L, Jessen N, Vissing K (2014) Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids 46(10):2377–2392. doi: 10.1007/s00726-014-1792-1 CrossRefPubMedGoogle Scholar
  36. Reidy P, Borack M, Markofski M, Dickinson J, Drummond M, Fry C, Gundermann D, Walker D, Volpi E, Rasmussen B (2014a) Inactivity from one overnight hospital stay reduces basal muscle protein synthesis in young adults. FASEB J 28:820.15Google Scholar
  37. Reidy PT, Hinkley JM, Trappe TA, Trappe SW, Harber MP (2014b) Protein composition of endurance trained human skeletal muscle. Int J Sports Med 35(6):476–481. doi: 10.1055/s-0033-1351334 PubMedGoogle Scholar
  38. Reidy PT, Walker DK, Dickinson JM, Gundermann DM, Drummond MJ, Timmerman KL, Cope MB, Mukherjea R, Jennings K, Volpi E, Rasmussen BB (2014c) Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle. J Appl Physiol 116 (11):1353–1364. doi: 10.1152/japplphysiol.01093.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108. doi: 10.1038/emboj.2012.32 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stefanetti RJ, Lamon S, Rahbek SK, Farup J, Zacharewicz E, Wallace MA, Vendelbo MH, Russell AP, Vissing K (2014) Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3 A in human skeletal muscle. J Appl Physiol (1985) 116 (11):1491–1502. doi: 10.1152/japplphysiol.00136.2013 CrossRefPubMedGoogle Scholar
  41. Tang JE, Perco JG, Moore DR, Wilkinson SB, Phillips SM (2008) Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol 294(1):R172–R178. doi: 10.1152/ajpregu.00636.2007 CrossRefPubMedGoogle Scholar
  42. Tessari P, Garibotto G, Inchiostro S, Robaudo C, Saffioti S, Vettore M, Zanetti M, Russo R, Deferrari G (1996) Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics. J Clin Invest 98(6):1481–1492. doi: 10.1172/JCI118937 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vissing K, McGee SL, Farup J, Kjolhede T, Vendelbo MH, Jessen N (2011) Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2011.01395.x Google Scholar
  44. Vissing K, McGee S, Farup J, Kjolhede T, Vendelbo M, Jessen N (2013) Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports 23(3):355–366CrossRefPubMedGoogle Scholar
  45. von Walden F, Casagrande V, Ostlund Farrants AK, Nader GA (2012) Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. Am J Physiol Physiol 302(10):C1523–C1530. doi: 10.1152/ajpcell.00460.2011 CrossRefGoogle Scholar
  46. Walker S, Hulmi JJ, Wernbom M, Nyman K, Kraemer WJ, Ahtiainen JP, Hakkinen K (2013) Variable resistance training promotes greater fatigue resistance but not hypertrophy versus constant resistance training. Eur J Appl Physiol 113(9):2233–2244. doi: 10.1007/s00421-013-2653-4 CrossRefPubMedGoogle Scholar
  47. Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. North-Holland Pub. Co.; sole distributors for the U.S.A. and Canada, Elsevier North-Holland, Amsterdam; New York, New YorkGoogle Scholar
  48. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586 (Pt 15):3701–3717. ([pii]: jphysiol.2008.153916)CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wolfe RR, Chinkes DL (2005) Isotope tracers in metabolic research : principles and practice of kinetic analysis. 2nd edn. Wiley-Liss, HobokenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Paul T. Reidy
    • 1
    • 2
  • Michael S. Borack
    • 1
    • 2
  • Melissa M. Markofski
    • 3
  • Jared M. Dickinson
    • 1
    • 2
    • 3
  • Christopher S. Fry
    • 1
    • 2
  • Rachel R. Deer
    • 3
  • Elena Volpi
    • 3
    • 4
  • Blake B. Rasmussen
    • 1
    • 2
    • 3
    Email author
  1. 1.Center for Recovery, Physical Activity and NutritionUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of Nutrition and Metabolism, School of Health ProfessionsUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Sealy Center on AgingUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Department of Internal Medicine/GeriatricsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations