Advertisement

European Journal of Applied Physiology

, Volume 116, Issue 10, pp 1955–1963 | Cite as

Post-exercise blood flow restriction attenuates muscle hypertrophy

  • Scott J. Dankel
  • Samuel L. Buckner
  • Matthew B. Jessee
  • Kevin T. Mattocks
  • J. Grant Mouser
  • Brittany R. Counts
  • Gilberto C. Laurentino
  • Takashi Abe
  • Jeremy P. LoennekeEmail author
Original Article

Abstract

Purpose

Applying blood flow restriction during low-load resistance training has been shown to augment muscle hypertrophy which has been attributed to metabolic accumulation. It remains unknown, however, whether metabolites can augment muscle growth when maintained post-exercise.

Methods

Thirteen untrained individuals (6 males and 7 females) performed 24 training sessions. The control arm performed one set of elbow flexion (70 % 1RM) to volitional fatigue, while the experimental arm performed the same protocol immediately followed by 3 min of blood flow restriction (70 % arterial occlusion). Muscle growth (ultrasound) was measured at 50, 60, and 70 % of the distance between the lateral epicondyle and acromion process.

Results

Both conditions completed the same exercise volume [3678 (95 % CI 2962, 4393) vs. 3638 kg (95 % CI 2854, 4423)]. There was a condition by time interaction (p = 0.031) demonstrating an attenuation of muscle growth at the 60 % site in the experimental [pre 3.1 (95 % CI 2.8, 3.5), post 3.1 (95 % CI 2.7, 3.5) cm] vs. control [pre 3.1 (95 % CI 2.6, 3.6), post 3.3 (95 % CI 2.8, 3.7) cm] condition. Muscle growth at the 50 % and 70 % sites was similar at the group level, although there were attenuations at the individual level. Exploratory analyses of pre–post mean (95 % CI) changes in muscle thickness suggested that this attenuation in the experimental condition occurred only in females [50 % site 0.0 (−0.2, 0.0) cm; 60 % site −0.1 (−0.3, 0.0) cm; 70 % site 0.0 (−0.1, 0.1) cm].

Conclusions

The application of blood flow restriction post high-load training did not augment muscle growth for either sex, and appeared to attenuate muscle growth among females.

Keywords

Elbow flexion KAATSU Occlusion training Oxidative stress Resistance exercise Strength 

Abbreviations

1RM

One-repetition maximum

ANOVA

Analysis of variance

Notes

Compliance with ethical standards

Conflicts of interest

None.

Source of funding

This manuscript was partially supported by funding from the BioLayne Foundation (J.P.L and S. J. D.).

Supplementary material

421_2016_3447_MOESM1_ESM.tif (4 mb)
Supplementary material 1 (TIFF 4105 kb)

References

  1. Bloodsworth A, O’Donnell VB, Freeman BA (2000) Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thromb Vasc Biol 20:1707–1715CrossRefPubMedGoogle Scholar
  2. Cook CJ, Kilduff LP, Beaven CM (2014) Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform 9:166–172. doi: 10.1123/ijspp.2013-0018 CrossRefPubMedGoogle Scholar
  3. Counts BR, Buckner SL, Dankel SJ et al (2016a) The acute and chronic effects of “NO LOAD” resistance training. Physiol Behav 164:345–352. doi: 10.1016/j.physbeh.2016.06.024 CrossRefPubMedGoogle Scholar
  4. Counts BR, Dankel SJ, Barnett BE et al (2016b) Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 53:438–445. doi: 10.1002/mus.24756 CrossRefPubMedGoogle Scholar
  5. Dankel SJ, Jessee MB, Abe T, Loenneke JP (2015) The effects of blood flow restriction on upper-body musculature located distal and proximal to applied pressure. Sports Med. doi: 10.1007/s40279-015-0407-7 Google Scholar
  6. Ellefsen S, Hammarström D, Strand TA et al (2015) Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol 309:R767–R779. doi: 10.1152/ajpregu.00497.2014 CrossRefPubMedGoogle Scholar
  7. Farup J, de Paoli F, Bjerg K et al (2015) Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. doi: 10.1111/sms.12396 Google Scholar
  8. Garten RS, Goldfarb A, Crabb B, Waller J (2015) The impact of partial vascular occlusion on oxidative stress markers during resistance exercise. Int J Sports Med 36:542–549. doi: 10.1055/s-0034-1396827 CrossRefPubMedGoogle Scholar
  9. Goldfarb AH, Garten RS, Chee PDM et al (2008) Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol 104:813–819. doi: 10.1007/s00421-008-0836-1 CrossRefPubMedGoogle Scholar
  10. Gundermann DM, Fry CS, Dickinson JM et al (2012) Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol Bethesda Md 1985 112:1520–1528. doi: 10.1152/japplphysiol.01267.2011 Google Scholar
  11. Kacin A, Strazar K (2011) Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports 21:e231–e241. doi: 10.1111/j.1600-0838.2010.01260.x CrossRefPubMedGoogle Scholar
  12. Labarbera KE, Murphy BG, Laroche DP, Cook SB (2013) Sex differences in blood flow restricted isotonic knee extensions to fatigue. J Sports Med Phys Fitness 53:444–452PubMedGoogle Scholar
  13. Laurentino G, Ugrinowitsch C, Aihara AY et al (2008) Effects of strength training and vascular occlusion. Int J Sports Med 29:664–667. doi: 10.1055/s-2007-989405 CrossRefPubMedGoogle Scholar
  14. Laurentino GC, Ugrinowitsch C, Roschel H et al (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44:406–412. doi: 10.1249/MSS.0b013e318233b4bc CrossRefPubMedGoogle Scholar
  15. Laurentino GC, Loenneke JP, Teixeira EL et al (2015) The effect of cuff width on muscle adaptations after blood flow restriction training. Med Sci Sports Exerc. doi: 10.1249/MSS.0000000000000833 Google Scholar
  16. Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31:1–4. doi: 10.1055/s-0029-1239499 CrossRefPubMedGoogle Scholar
  17. Loenneke JP, Fahs CA, Wilson JM, Bemben MG (2011) Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses 77:748–752. doi: 10.1016/j.mehy.2011.07.029 CrossRefPubMedGoogle Scholar
  18. Loenneke JP, Balapur A, Thrower AD et al (2012a) Blood flow restriction reduces time to muscular failure. Eur J Sport Sci 12:238–243. doi: 10.1080/17461391.2010.551420 CrossRefGoogle Scholar
  19. Loenneke JP, Fahs CA, Rossow LM et al (2012b) Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol 112:2903–2912. doi: 10.1007/s00421-011-2266-8 CrossRefPubMedGoogle Scholar
  20. Loenneke JP, Fahs CA, Thiebaud RS et al (2012c) The acute muscle swelling effects of blood flow restriction. Acta Physiol Hung 99:400–410. doi: 10.1556/APhysiol.99.2012.4.4 CrossRefPubMedGoogle Scholar
  21. Loenneke JP, Wilson JM, Marín PJ et al (2012d) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112:1849–1859. doi: 10.1007/s00421-011-2167-x CrossRefPubMedGoogle Scholar
  22. Loenneke JP, Thiebaud RS, Fahs CA et al (2013) Blood flow restriction does not result in prolonged decrements in torque. Eur J Appl Physiol 113:923–931. doi: 10.1007/s00421-012-2502-x CrossRefPubMedGoogle Scholar
  23. Loenneke JP, Kim D, Fahs CA et al (2015a) Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve 51:713–721. doi: 10.1002/mus.24448 CrossRefPubMedGoogle Scholar
  24. Loenneke JP, Kim D, Fahs CA et al (2015b) Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve 51:713–721. doi: 10.1002/mus.24448 CrossRefPubMedGoogle Scholar
  25. Mason S, Wadley GD (2014) Skeletal muscle reactive oxygen species: a target of good cop/bad cop for exercise and disease. Redox Rep Commun Free Radic Res 19:97–106. doi: 10.1179/1351000213Y.0000000077 CrossRefGoogle Scholar
  26. Merry TL, Ristow M (2015) Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. doi: 10.1113/JP270654 PubMedGoogle Scholar
  27. Mitchell CJ, Churchward-Venne TA, West DDW et al (2012a) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. doi: 10.1152/japplphysiol.00307.2012 Google Scholar
  28. Mitchell CJ, Churchward-Venne TA, West DDW et al (2012b) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. doi: 10.1152/japplphysiol.00307.2012 Google Scholar
  29. Morton RW, McGlory C, Phillips SM (2015) Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Exerc Physiol. doi: 10.3389/fphys.2015.00245 Google Scholar
  30. Motykie GD, Zebala LP, Caprini JA et al (2000) A guide to venous thromboembolism risk factor assessment. J Thromb Thrombolysis 9:253–262CrossRefPubMedGoogle Scholar
  31. Oishi Y, Tsukamoto H, Yokokawa T et al (2015) Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol Bethesda Md 1985 118:742–749. doi: 10.1152/japplphysiol.00054.2014 Google Scholar
  32. Ozaki H, Abe T, Mikesky AE et al (2015) Physiological stimuli necessary for muscle hypertrophy. J Phys Fit Sports Med 4:43–51. doi: 10.7600/jpfsm.4.43 CrossRefGoogle Scholar
  33. Ozaki H, Loenneke JP, Buckner SL, Abe T (2016) Muscle growth across a variety of exercise modalities and intensities: contributions of mechanical and metabolic stimuli. Med Hypotheses 88:22–26. doi: 10.1016/j.mehy.2015.12.026 CrossRefPubMedGoogle Scholar
  34. Patterson SD, Ferguson RA (2010) Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur J Appl Physiol 108:1025–1033. doi: 10.1007/s00421-009-1309-x CrossRefPubMedGoogle Scholar
  35. Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med Auckl NZ 45:187–200. doi: 10.1007/s40279-014-0264-9 CrossRefGoogle Scholar
  36. Suga T, Okita K, Takada S et al (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112:3915–3920. doi: 10.1007/s00421-012-2377-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Takarada Y, Takazawa H, Sato Y et al (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol Bethesda Md 1985 88:2097–2106Google Scholar
  38. Timmerman KL, Lee JL, Dreyer HC et al (2010) Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J Clin Endocrinol Metab 95:3848–3857. doi: 10.1210/jc.2009-2696 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res Natl Strength Cond Assoc 19:231–240. doi: 10.1519/15184.1 Google Scholar
  40. Yasuda T, Ogasawara R, Sakamaki M et al (2011) Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol 111:2525–2533. doi: 10.1007/s00421-011-1873-8 CrossRefPubMedGoogle Scholar
  41. Yasuda T, Loenneke JP, Thiebaud RS, Abe T (2012) Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS ONE 7:e52843. doi: 10.1371/journal.pone.0052843 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Scott J. Dankel
    • 1
  • Samuel L. Buckner
    • 1
  • Matthew B. Jessee
    • 1
  • Kevin T. Mattocks
    • 1
  • J. Grant Mouser
    • 1
  • Brittany R. Counts
    • 1
  • Gilberto C. Laurentino
    • 1
  • Takashi Abe
    • 2
  • Jeremy P. Loenneke
    • 1
    Email author
  1. 1.Department of Health, Exercise Science, and Recreation ManagementKevser Ermin Applied Physiology Laboratory, The University of MississippiUniversityUSA
  2. 2.National Institute of Fitness and Sports in KanoyaKanoyaJapan

Personalised recommendations