European Journal of Applied Physiology

, Volume 116, Issue 5, pp 939–946 | Cite as

Increases in M-wave latency of biceps brachii after elbow flexor eccentric contractions in women

  • Karina Kouzaki
  • Kazunori Nosaka
  • Eisuke Ochi
  • Koichi Nakazato
Original Article

Abstract

Purpose

Eccentric contractions (ECCs) induce muscle damage that is indicated by prolonged loss of muscle function and delayed onset muscle soreness. It is possible that ECCs affect motor nerves, and this may contribute to the prolonged decreases in force generating capability. The present study investigated the hypothesis that M-wave latency of biceps brachii would be increased after maximal elbow flexor ECCs resulting in prolonged loss of muscle strength.

Methods

Fifteen women performed exercise consisting of 60 maximal ECCs of the elbow flexors using their non-dominant arm. M-wave latency was assessed by the time taken from electrical stimulation applied to the Erb’s point to the onset of M-wave of the biceps brachii before, immediately after, and 1–4 days after exercise. Maximal voluntary isometric contraction (MVC) torque, range of motion (ROM) and muscle soreness using a numerical rating scale were also assessed before and after exercise.

Results

Prolonged decreases in MVC torque (1–4 days post-exercise: −54 to −15 %) and ROM (1–2 days: −32 to −22 %), and increased muscle soreness (peak: 4.2 out of 10) were evident after exercise (p < 0.05). The M-wave latency increased (p < 0.01) from 5.8 ± 1.0 ms before exercise to 6.5 ± 1.7 ms at 1 day and 7.2 ± 1.5 ms at 2 days after exercise for the exercised arm only. No significant changes in M-wave amplitude were evident after exercise.

Conclusion

The increased M-wave latency did not fully explain the prolonged decreases in MVC torque after eccentric exercise, but may indicate reversible motor nerve impairment.

Keywords

M-wave Biceps brachii Erb’s point Nerve damage Muscle damage 

Abbreviations

CK

Creatine kinase

CNT

Control conduction

CV

Coefficient of variation

DOMS

Delayed onset muscle soreness

E–C coupling

Excitation contraction coupling

ECCs

Eccentric contractions

mdx

Muscular dystrophy

MFCV

Muscle fiber conduction velocity

MsN

Musculocutaneous nerve

NCV

Nerve conduction velocity

NMJ

Neuromuscular junction

NRS

Numerical rating scale

ROM

Range of motion

SD

Standard deviation

SR

Sarcoplasmic reticulum

t-tubule

Transverse tubule

References

  1. Buschbacher RM (2000) Manual of nerve conduction studies. Demos Medical Publishing, New YorkGoogle Scholar
  2. Buschbacher RM, Weir SK, Bentley JG, Cottrell (2009) Normal motor nerve condcution studies using surface electrode recording from the supraspinatus, infraspinatus, deltoid, and biceps. PM R 1(2):101–106. doi:10.1016/j.pmrj.2008.08.002 CrossRefPubMedGoogle Scholar
  3. Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119(9):1951–1965. doi:10.1016/j.clinph.2008.03.018 CrossRefPubMedGoogle Scholar
  4. Carter A, Dobridge J, Hackney AC (2001) Influence of estrogen on markers of muscle tissue damage following eccentric exercise. Fiziol Cheloveka 27(5):626–630. doi:10.1023/A:1012395831685 Google Scholar
  5. Chapman D, Newton M, McGuian M, Nosaka K (2011) Effect of slow-velocity lengthening contractions on muscle damage induced by fast-velocity lengthening contractions. J Strength Cond Res 25(1):211–219. doi:10.1519/JSC.0b013e3181bac2bd CrossRefPubMedGoogle Scholar
  6. Chen TC, Chen HL, Liu YC, Nosaka K (2014) Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. Eur J Appl Physiol 114(6):1183–1195. doi:10.1007/s00421-014-2848-3 CrossRefPubMedGoogle Scholar
  7. Cleak MJ, Eston RG (1992) Muscle soreness, swelling, stiffness and stremgth loss after intense eccentric exercise. Br J Sports Med 26(4):267–272. doi:10.1136/bjsm.26.4.267 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Colak T, Bamac B, Alemdar M, Macit Selekler H, Ozbek A, Colak S, Dincer O (2009) Nerve conduction studies of the axillary, musculocutaneous and radial nerves in elite ice hockey players. J Sports Med Phys Fitness 49(2):224–231PubMedGoogle Scholar
  9. de Mouzon J, Testart J, Lefevre B, Pouly JL, Frydman R (1984) Time relationships between basal body temperature and ovulation or plasma progestins. Fertil Steril 41(2):254–259PubMedGoogle Scholar
  10. Ekblom A, Hansson P (1988) Pain intensity measurements in patients with acute pain receiving afferent stimulation. J Neurol Neurosurg Psychiatry 51(4):481–486. doi:10.1136/jnnp.51.4.481 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hedayatpour N, Falla D, Arendt-Nielsen L, Vila-Cha C, Farina D (2009) Motor unit conduction velocity during sustained contraction after eccentric exercise. Med Sci Sports Exerc 41(10):1927–1933. doi:10.1249/MSS.0b013e3181a3a505 CrossRefPubMedGoogle Scholar
  12. Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, Chipkin S, Clarkson PM, Parcell AC (2015) Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 29(7):2894–2904. doi:10.1096/fj.14-266668 CrossRefPubMedGoogle Scholar
  13. Ingalls C, Warren G, Williams J, Ward C, Armstrong R (1998) E–C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J Appl Physiol 85(1):58–67PubMedGoogle Scholar
  14. Kaplan PE (1976) Sensory and motor residual latency measurements in helathy patients and patients with neuropathy-part 1. J Neurol Neurosurg Psychiatry 39(4):338–340. doi:10.1136/jnnp.39.4.338 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kon M, Tanabe K, Lee H, Kimura F, Akimoto T, Kono I (2007) Eccentric muscle contractions induce greater oxidative stress than concentric contractions in skeletal muscle. Appl Physiol Nutr Metab 32(2):273–281. doi:10.1139/H06-115 CrossRefPubMedGoogle Scholar
  16. Kouyoumdjian JA (2006) Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve 34(6):785–788. doi:10.1002/mus.20624 CrossRefPubMedGoogle Scholar
  17. Lee K, Kouzaki K, Ochi E, Kobayashi K, Tsutaki A, Hiranuma K, Kami K, Nakazato K (2014) Eccentric contractions of gastrocnemius muscle-induced nerve damage in rats. Muscle Nerve 50(1):87–94. doi:10.1002/mus.24120 CrossRefPubMedGoogle Scholar
  18. Lundborg G, Gelberman RH, Minteer-Convery M, Lee YF, Hargens AR (1982) Median nerve compression in the carpal tunnel—functional response to experimentally induced controlled pressure. J Hand Surg Am 7(3):252–259CrossRefPubMedGoogle Scholar
  19. Maccabee PJ, Eberle LP, Stein IA, Willer JA, Lipitz ME, Kula RW, Marx T, Muntean EV, Amassian VE (2011) Upper leg conduction time distinguishes demyelinating neuropathies. Muscle Nerve 43(4):518–530. doi:10.1002/mus.21909 CrossRefPubMedGoogle Scholar
  20. Mallik A, Weir AI (2005) Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry 76(Suppl 2):ii23–ii31. doi:10.1136/jnnp.2005.069138 PubMedPubMedCentralGoogle Scholar
  21. Markofski MM, Braun WA (2014) Influence of menstrual cycle on indices of contraction-induced muscle damage. J Strength Cond Res 28(9):2649–2656. doi:10.1519/JSC.0000000000000429 CrossRefPubMedGoogle Scholar
  22. Martins RS, Bastos D, Siqueira MG, Heise CO, Teixeira MJ (2013) Traumatic injuries of peripheral nerves: a review with emphasis on surgical indication. Arq Neuropsiquiatr 71(10):811–814. doi:10.1590/0004-282X20130127 CrossRefPubMedGoogle Scholar
  23. Menorca RM, Fussell TS, Elfar JC (2013) Peripheral nerve trauma: mechanisms of injury and recovery. Hand Clin 29(3):317–330. doi:10.1016/j.hcl.2013.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Muthalib M, Lee H, Millet GY, Ferrari M, Nosaka K (2011) The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity. J Appl Physiol 110(5):1390–1399. doi:10.1152/japplphysiol.00191.2010 CrossRefPubMedGoogle Scholar
  25. Newton MJ, Sacco P, Chapman D, Nosaka K (2013) Do dominant and non-dominant arms respond similarly to maximal eccentric exercise of the elbow flexors? J Sci Med Sport 16(2):166–171. doi:10.1016/j.jsams.2012.06.001 CrossRefPubMedGoogle Scholar
  26. Nosaka K, Clarkson PM (1996) Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 28(8):953–961. doi:10.1097/00005768-199608000-00003 CrossRefPubMedGoogle Scholar
  27. Piitulainen H, Bottas R, Komi P, Linnamo V, Avela J (2010) Impaired action potential conduction at high force levels after eccentric exercise. J Electromyogr Kinesiol 20(5):879–887. doi:10.1016/j.jelekin.2009.10.001 CrossRefPubMedGoogle Scholar
  28. Piitulainen H, Botter A, Merletti R, Avela J (2011) Muscle fiber conduction velocity is more affected after eccentric than concentric exercise. Eur J Appl Physiol 111(2):261–273. doi:10.1007/s00421-010-1652-y CrossRefPubMedGoogle Scholar
  29. Raastad T, Owe SG, Paulsen G, Enns D, Overgaard K, Crameri R, Kiil S, Belcastro A, Bergersen L, Hallen J (2010) Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc 42(1):86–95. doi:10.1249/MSS.0b013e3181ac7afa CrossRefPubMedGoogle Scholar
  30. Sayyed SG, Kumar A, Sharma SS (2006) Effects of U83836E on nerve functions, hyperalgesia and oxidative stress in experimental diabetic neuropathy. Life Sci 79(8):777–783. doi:10.1016/j.ifs.2006.02.033 CrossRefPubMedGoogle Scholar
  31. Seddon HJ (1942) A classification of nerve injuries. Br Med J 2(4260):237–239CrossRefPubMedPubMedCentralGoogle Scholar
  32. Simmons Z (2013) Electrodiagnosis of brachial plexopathies and proximal upper extremity neuropathies. Phys Med Rehabil Clin N Am 24(1):13–32. doi:10.1016/j.pmr.2012.08.021 CrossRefPubMedGoogle Scholar
  33. Sung JY, Kuwabara S, Ogawara K, Kanai K, Hattori T (2002) Patterns of nerve conduction abnormalities in POEMS syndrome. Muscle Nerve 26(2):189–193. doi:10.1002/mus.10182 CrossRefPubMedGoogle Scholar
  34. Takekura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N (2001) Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J Physiol 533(Pt 2):571–583. doi:10.1111/j.1469-7793.2001.0571a.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Temucin CM, Nurlu G (2011) Measurement of motor root conduction time at the early stage of Guillain–Barre syndrome. Eur J Neurol 18(10):1240–1245. doi:10.1111/j.1468-1331.2011.03365.x CrossRefPubMedGoogle Scholar
  36. Tenan MS, Peng YL, Hackney AC, Griffin L (2013) Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Med Sci Sports Exerc 45(11):2151–2157. doi:10.1249/MSS.0b013e318299a69d CrossRefPubMedGoogle Scholar
  37. Trojaborg W (1976) Motor and sensory conduction in the musculocutaneous nerve. J Neurosurg Psychiatry 39(9):890–899. doi:10.1136/jnnp.39.9.890 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Karina Kouzaki
    • 1
  • Kazunori Nosaka
    • 2
  • Eisuke Ochi
    • 3
  • Koichi Nakazato
    • 1
  1. 1.Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
  2. 2.Centre for Exercise and Sports Science Research, School of Medical and Health SciencesEdith Cowan UniversityJoondalupAustralia
  3. 3.Graduate School of EducationOkayama UniversityOkayamaJapan

Personalised recommendations