Advertisement

European Journal of Applied Physiology

, Volume 116, Issue 1, pp 195–201 | Cite as

Comparison of the influence of age on cycling efficiency and the energy cost of running in well-trained triathletes

  • Jeremiah Peiffer
  • Chris R. Abbiss
  • Frederic Sultana
  • Thierry Bernard
  • Jeanick Brisswalter
Original Article

Abstract

Introduction

Locomotive efficiency is cited as an important component to endurance performance; however, inconsistent observations of age-related changes in efficiency question its influence in the performance of masters athletes.

Purpose

This study examined locomotive efficiency in young and masters triathletes during both a run and cycle test.

Methods

Twenty young (28.5 ± 2.6 years) and 20 masters (59.8 ± 1.3 years) triathletes completed an incremental cycling and running test to determine maximal aerobic consumption (VO2max) and the first ventilatory threshold (VT1). Participants then completed 10-min submaximal running and cycling tests at VT1 during which locomotive efficiency was calculated from expired ventilation. Additionally, body fat percentage was determined using skin-fold assessment.

Results

During the cycle and run, VO2max was lower in the masters (48.3 ± 5.4 and 49.6 ± 4.8 ml kg−1 min−1, respectively) compared with young (61.6 ± 5.7 and 62.4 ± 5.2 ml kg−1 min−1, respectively) cohort. Maximal running speed and the cycling power output corresponding to VO2max were also lower in the masters (15.1 ± 0.8 km h−1 and 318.6 ± 26.0 W) compared with the young (19.5 ± 1.3 km h−1 and 383.6 ± 35.0 W) cohort. Cycling efficiency was lower (−11.2 %) in the masters compared with young cohort. Similar results were observed for the energy cost of running (+10.8 %); however, when scaled to lean body mass, changes were more pronounced during the run (+22.1 %).

Conclusions

Within trained triathletes, ageing can influence efficiency in both the run and cycle discipline. While disregarded in the past, efficiency should be considered in research examining performance in ageing athletes.

Keywords

Economy Energy Triathlon Performance 

Abbreviations

MAS

Maximal aerobic speed

MAP

Maximal aerobic power

VO2

Oxygen consumption

VO2max

Maximal aerobic consumption

VT1

First ventilatory threshold

Notes

Complaince with ethical standards

Conflict of interest

The authors have disclosed that they have no significant relationships with, or financial interest in, any commercial companies pertaining to this article. No funding was received for this work.

References

  1. Allen WK, Seals DR, Hurley BF, Ehsani AA, Hagberg JM (1985) Lactate threshold and distance-running performance in young and older endurance athletes. J Appl Physiol 58(4):1281–1284PubMedGoogle Scholar
  2. Arampatzis A, Degens H, Baltzopoulos V, Rittweger J (2011) Why do older sprinters reach the finish line later? Exerc Sport Sci Rev 39(1):18–22. doi: 10.1097/JES.0b013e318201efe0 PubMedCrossRefGoogle Scholar
  3. Bernard T, Sultana F, Lepers R, Hausswirth C, Brisswalter J (2010) Age-related decline in olympic triathlon performance: effect of locomotion mode. Exp Aging Res 36(1):64–78. doi: 10.1080/03610730903418620 PubMedCrossRefGoogle Scholar
  4. Brisswalter J, Nosaka K (2013) Neuromuscular factors associated with decline in long-distance running performance in master athletes. Sports Med 43(1):51–63. doi: 10.1007/s40279-012-0006-9 PubMedCrossRefGoogle Scholar
  5. Brisswalter J, Tartaruga MP (2014) Comparison of COSMED’S FitMate and K4b2 metabolic systems reliability during graded cycling exercise. Scand J Clin Lab Invest 74(8):722–724. doi: 10.3109/00365513.2014.930711 PubMedCrossRefGoogle Scholar
  6. Brisswalter J, Wu SS, Sultana F, Bernard T, Abbiss CR (2014) Age difference in efficiency of locomotion and maximal power output in well-trained triathletes. Eur J Appl Physiol 114(12):2579–2586. doi: 10.1007/s00421-014-2977-8 PubMedCrossRefGoogle Scholar
  7. Cavagna GA, Legramandi MA, Peyre-Tartaruga LA (2008) Old men running: mechanical work and elastic bounce. Proc Biol Sci 275(1633):411–418. doi: 10.1098/rspb.2007.1288 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Coyle EF (2005) Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 98(6):2191–2196. doi: 10.1152/japplphysiol.00216.2005 PubMedCrossRefGoogle Scholar
  9. di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7(2):55–72. doi: 10.1055/s-2008-1025736 PubMedCrossRefGoogle Scholar
  10. Duffield R, Dawson B, Pinnington HC, Wong P (2004) Accuracy and reliability of a Cosmed K4b2 portable gas analysis system. J Sci Med Sport 7(1):11–22PubMedCrossRefGoogle Scholar
  11. Evans SL, Davy KP, Stevenson ET, Seals DR (1995) Physiological determinants of 10-km performance in highly trained female runners of different ages. J Appl Physiol (1985) 78(5):1931–1941Google Scholar
  12. Foster C, Lucia A (2007) Running economy : the forgotten factor in elite performance. Sports Med 37(4–5):316–319PubMedCrossRefGoogle Scholar
  13. Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38(6):1132–1139PubMedGoogle Scholar
  14. Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71PubMedCrossRefGoogle Scholar
  15. Howe CC, Matzko RO, Piaser F, Pitsiladis YP, Easton C (2014) Stability of the K4b(2) portable metabolic analyser during rest, walking and running. J Sports Sci 32(2):157–163. doi: 10.1080/02640414.2013.812231 PubMedCrossRefGoogle Scholar
  16. Jones PR, Pearson J (1969) Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults. J Physiol 204(2):63P–66PPubMedGoogle Scholar
  17. Kram R, Taylor CR (1990) Energetics of running: a new perspective. Nature 346(6281):265–267. doi: 10.1038/346265a0 PubMedCrossRefGoogle Scholar
  18. Lacour JR, Bourdin M (2015) Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol 115(4):651–673. doi: 10.1007/s00421-015-3115-y PubMedCrossRefGoogle Scholar
  19. Lepers R, Sultana F, Bernard T, Hausswirth C, Brisswalter J (2010) Age-related changes in triathlon performances. Int J Sports Med 31(4):251–256. doi: 10.1055/s-0029-1243647 PubMedCrossRefGoogle Scholar
  20. Lepers R, Knechtle B, Stapley PJ (2013) Trends in triathlon performance: effects of sex and age. Sports Med 43(9):851–863. doi: 10.1007/s40279-013-0067-4 PubMedCrossRefGoogle Scholar
  21. Louis J, Hausswirth C, Easthope C, Brisswalter J (2012) Strength training improves cycling efficiency in master endurance athletes. Eur J Appl Physiol 112(2):631–640. doi: 10.1007/s00421-011-2013-1 PubMedCrossRefGoogle Scholar
  22. Maharam LG, Bauman PA, Kalman D, Skolnik H, Perle SM (1999) Masters athletes: factors affecting performance. Sports Med 28(4):273–285PubMedCrossRefGoogle Scholar
  23. Narici MV, Maffulli N, Maganaris CN (2008) Ageing of human muscles and tendons. Disabil Rehabil 30(20–22):1548–1554. doi: 10.1080/09638280701831058 PubMedCrossRefGoogle Scholar
  24. Peiffer JJ, Abbiss CR, Chapman D, Laursen PB, Parker DL (2008) Physiological characteristics of masters-level cyclists. J Strength Cond Res 22(5):1434–1440. doi: 10.1519/JSC.0b013e318181a0d2 PubMedCrossRefGoogle Scholar
  25. Porter C et al (2015) Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocrinol Metab:ajpendo 00125:02015. doi: 10.1152/ajpendo.00125.2015 Google Scholar
  26. Reaburn P, Dascombe B (2008) Endurance performance in masters athletes. Eur Rev Aging Phys Act 5(1):31–42CrossRefGoogle Scholar
  27. Rust CA, Lepers R, Stiefel M, Rosemann T, Knechtle B (2013) Performance in Olympic triathlon: changes in performance of elite female and male triathletes in the ITU World Triathlon Series from 2009 to 2012. Springerplus. doi: 10.1186/2193-1801-2-685
  28. Sacchetti M, Lenti M, Di Palumbo AS, De Vito G (2010) Different effect of cadence on cycling efficiency between young and older cyclists. Med Sci Sports Exerc 42(11):2128–2133. doi: 10.1249/MSS.0b013e3181e05526 PubMedGoogle Scholar
  29. Santos DA et al (2014) Reference values for body composition and anthropometric measurements in athletes. PLoS One 9(5):e97846. doi: 10.1371/journal.pone.0097846 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med 34(7):465–485PubMedCrossRefGoogle Scholar
  31. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102(15):5618–5623. doi: 10.1073/pnas.0501559102 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Sultana F, Abbiss CR, Louis J, Bernard T, Hausswirth C, Brisswalter J (2012) Age-related changes in cardio-respiratory responses and muscular performance following an Olympic triathlon in well-trained triathletes. Eur J Appl Physiol 112(4):1549–1556. doi: 10.1007/s00421-011-2115-9 PubMedCrossRefGoogle Scholar
  33. Sunde A, Storen O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J (2010) Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res 24(8):2157–2165. doi: 10.1519/JSC.0b013e3181aeb16a PubMedCrossRefGoogle Scholar
  34. Tanaka H, Seals DR (2003) Invited review: dynamic exercise performance in masters athletes: insight into the effects of primary human aging on physiological functional capacity. J Appl Physiol 95(5):2152–2162. doi: 10.1152/japplphysiol.00320.2003 PubMedCrossRefGoogle Scholar
  35. Tanaka H, Seals DR (2008) Endurance exercise performance in masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol 586(1):55–63. doi: 10.1113/jphysiol.2007.141879 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Trappe SW, Costill DL, Vukovich MD, Jones J, Melham T (1996) Aging among elite distance runners: a 22-yr longitudinal study. J Appl Physiol (1985) 80(1):285–290Google Scholar
  37. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292(1):E151–E157. doi: 10.1152/ajpendo.00278.2006 PubMedCrossRefGoogle Scholar
  38. Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35(2):236–243PubMedGoogle Scholar
  39. Whipp BJ (1994) The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc 26(11):1319–1326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeremiah Peiffer
    • 2
  • Chris R. Abbiss
    • 3
  • Frederic Sultana
    • 1
  • Thierry Bernard
    • 1
  • Jeanick Brisswalter
    • 1
    • 2
  1. 1.Laboratory of Human Motricity, Education Sport and HealthUniversity of Nice Sophia AntipolisNiceFrance
  2. 2.School of Psychology and Exercise ScienceMurdoch UniversityMurdochAustralia
  3. 3.Centre for Exercise and Sports Science Research, School of Exercise and Health SciencesEdith Cowan UniversityJoondalupAustralia

Personalised recommendations