European Journal of Applied Physiology

, Volume 115, Issue 12, pp 2521–2530 | Cite as

Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise

  • Claire E. Badenhorst
  • Brian Dawson
  • Gregory R. Cox
  • Coby M. Laarakkers
  • Dorine W. Swinkels
  • Peter Peeling
Original Article



To examine the effects of 24-h controlled carbohydrate intake on next day pre- and post-exercise inflammatory and hepcidin responses.


In a crossover design, 12 well-trained endurance athletes (Ht 181.08 ± 7.68 cm; Wt 74.8 ± 11.5 kg, VO2peak 68.9 ± 7.2 ml kg−1 min−1) completed two experimental (2-day) trials. On day 1, participants completed a glycogen depletion task, including a 16-km run (80 % vVO2peak) and 5 × 1 min efforts (130 % vVO2peak) separated by 2-min recovery. Subsequently, strict dietary control was enforced for 24 h, where low carbohydrate (LCHO 3 g kg−1) or high carbohydrate (HCHO 10 g kg−1) diets were provided. Twenty-four hours later, participants completed an 8 × 3 min interval running session at 85 % vVO2peak followed by 3-h monitored recovery. Venous blood samples were collected pre-, immediately post- and 3-h post-exercise, which were analyzed for interleukin-6, serum iron, ferritin and hepcidin.


Interleukin-6 was elevated (p < 0.001) immediately post-exercise compared to baseline in both conditions, but was lower in HCHO (p = 0.015). Hepcidin levels were also lower at baseline (p = 0.049) in HCHO, and a large effect (d = 0.72) indicated a trend for lower levels at 3-h post-exercise compared to LCHO. Serum iron was increased post-exercise for both trials (p = 0.001), whereas serum ferritin remained unchanged.


Twenty-four hours of controlled low carbohydrate intake resulted in higher baseline hepcidin levels and post-exercise IL-6 responses than a high carbohydrate intake. Such hormone increases may be induced by gluconeogenic signaling of the liver, and may negatively impact an athlete’s iron metabolism.


Carbohydrates Iron metabolism Inflammation Athletes 



Analysis of variance


Blood lactate


Cyclic adenosine monophosphate




Carbon dioxide


cAMP response element-binding protein


Coefficient of variation




Graded exercise test


Hepcidin gene




High carbohydrate trial






Heart rate




Low carbohydrate trial


Least significant difference




Peroxisome proliferator-activated receptor gamma coactivator 1 α


Rating of perceived exertion


Standard deviation


Train Low, Compete High


Peak oxygen uptake


Velocity at peak oxygen uptake



The authors wish to acknowledge the High Performance Sports Research Grant funding received from the Australian Sports Commission.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. Baar K, McGee S (2008) Optimizing training adaptations by manipulating glycogen. Eur J Sport Sci 8:97–106. doi:10.1080/17461390801919094 CrossRefGoogle Scholar
  2. Badenhorst CE, Dawson B, Goodman C et al (2014) Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol 114:951–959. doi:10.1007/s00421-014-2829-6 CrossRefPubMedGoogle Scholar
  3. Bekri S, Gual P, Anty R et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796. doi:10.1053/j.gastro.2006.07.007 CrossRefPubMedGoogle Scholar
  4. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  5. Buchman AL, Keen C, Commisso J et al (1998) The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr 17:124–127CrossRefPubMedGoogle Scholar
  6. Burke LM (2010) Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports 20(Suppl 2):48–58. doi:10.1111/j.1600-0838.2010.01185.x CrossRefPubMedGoogle Scholar
  7. Bussau VA, Fairchild TJ, Rao A et al (2002) Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol 87:290–295. doi:10.1007/s00421-002-0621-5 CrossRefPubMedGoogle Scholar
  8. Costill DL, Sherman WM, Fink WJ et al (1981) The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 34:1831–1836PubMedGoogle Scholar
  9. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  10. Fallon KE (2001) The acute phase response and exercise: the ultramarathon as prototype exercise. Clin J Sport Med 11:38–43CrossRefPubMedGoogle Scholar
  11. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33PubMedGoogle Scholar
  12. Giblett E (1968) The haptoglobin system. Ser Haematol 1:3–20Google Scholar
  13. Halson SL, Lancaster GI, Achten J et al (2004) Effects of carbohydrate supplementation on performance and carbohydrate oxidation after intensified cycling training. J Appl Physiol 97:1245–1253. doi:10.1152/japplphysiol.01368.2003 CrossRefPubMedGoogle Scholar
  14. Hawley JA, Tipton KD, Millard-Stafford ML (2006) Promoting training adaptations through nutritional interventions. J Sports Sci 24:709–721. doi:10.1080/02640410500482727 CrossRefPubMedGoogle Scholar
  15. Helge JW, Stallknecht B, Pedersen BK et al (2003) The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J Physiol 546:299–305PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hopkins W (2005) A spreadsheet for fully controlled crossovers. Sport Sci 9:3Google Scholar
  17. Jiang F, Sun Z-Z, Tang Y-T et al (2011) Hepcidin expression and iron parameters change in Type 2 diabetic patients. Diabetes Res Clin Pract 93:43–48. doi:10.1016/j.diabres.2011.03.028 CrossRefPubMedGoogle Scholar
  18. Jones AM, Doust JH (1996) A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci 14:321–327. doi:10.1080/02640419608727717 CrossRefPubMedGoogle Scholar
  19. Kanemaki T, Kitade H, Kaibori M et al (1998) Interleukin 1beta and interleukin 6, but not tumor necrosis factor alpha, inhibit insulin-stimulated glycogen synthesis in rat hepatocytes. Hepatology 27:1296–1303. doi:10.1002/hep.510270515 CrossRefPubMedGoogle Scholar
  20. Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750. doi:10.1096/fj.01-0507fje PubMedGoogle Scholar
  21. Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201. doi:10.1038/35051594 CrossRefPubMedGoogle Scholar
  22. Kroot JJC, Laarakkers CMM, Geurts-Moespot AJ et al (2010) Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders. Clin Chem 56:1570–1579. doi:10.1373/clinchem.2010.149187 CrossRefPubMedGoogle Scholar
  23. Laarakkers CMM, Wiegerinck ET, Klaver S et al (2013) Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform. PLoS One 8:e75518. doi:10.1371/journal.pone.0075518 PubMedCentralCrossRefPubMedGoogle Scholar
  24. McClung JP, Martini S, Murphy NE et al (2013) Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutr J 12:141. doi:10.1186/1475-2891-12-141 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Nemeth E, Rivera S, Gabayan V et al (2004a) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276. doi:10.1172/JCI20945 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Nemeth E, Tuttle MS, Powelson J et al (2004b) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. doi:10.1126/science.1104742 CrossRefPubMedGoogle Scholar
  27. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR et al (1998) Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc 30:671–678CrossRefPubMedGoogle Scholar
  28. Peeling P, Dawson B, Goodman C et al (2009a) Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol 106:51–59. doi:10.1007/s00421-009-0988-7 CrossRefPubMedGoogle Scholar
  29. Peeling P, Dawson B, Goodman C et al (2009b) Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab 19:583–597PubMedGoogle Scholar
  30. Peeling P, Dawson B, Goodman C et al (2009c) Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exerc 41:1138–1145. doi:10.1249/MSS.0b013e318192ce58 CrossRefPubMedGoogle Scholar
  31. Peeling P, Sim M, Badenhorst CE et al (2014) Iron status and the acute post-exercise hepcidin response in athletes. PLoS One 9:e93002. doi:10.1371/journal.pone.0093002 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Schumacher YO, Schmid A, König D, Berg A (2002) Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med 36:195–199PubMedCentralCrossRefPubMedGoogle Scholar
  33. Sim M, Dawson B, Landers G et al (2012) The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol 112:1889–1898. doi:10.1007/s00421-011-2156-0 CrossRefPubMedGoogle Scholar
  34. Sim M, Dawson B, Landers GJ et al (2014) A seven day running training period increases basal urinary hepcidin levels as compared to cycling. J Int Soc Sports Nutr 11:14. doi:10.1186/1550-2783-11-14 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Steensberg A, van Hall G, Osada T et al (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242PubMedCentralCrossRefPubMedGoogle Scholar
  36. Steensberg A, Febbraio MA, Osada T et al (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537(Pt 2):633–639PubMedCentralCrossRefPubMedGoogle Scholar
  37. Stouthard JM, Romijn JA, Van der Poll T et al (1995) Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Physiol 268:E813–E819PubMedGoogle Scholar
  38. Vecchi C, Montosi G, Garuti C et al (2014) Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 146:1060–1069. doi:10.1053/j.gastro.2013.12.016 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Weinstein DA, Roy CN, Fleming MD et al (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100:3776–3781. doi:10.1182/blood-2002-04-1260 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claire E. Badenhorst
    • 1
  • Brian Dawson
    • 1
  • Gregory R. Cox
    • 2
  • Coby M. Laarakkers
    • 3
    • 4
  • Dorine W. Swinkels
    • 3
    • 4
  • Peter Peeling
    • 1
  1. 1.School of Sport Science, Exercise and HealthThe University of Western Australia, M408CrawleyAustralia
  2. 2.Sports Nutrition, Australian Institute of SportGold CoastAustralia
  3. 3.Department of Laboratory Medicine (LGEM 830)Radboud University Medical CenterNijmegenThe Netherlands
  4. 4.Hepcidinanalysis.comNijmegenThe Netherlands

Personalised recommendations