Advertisement

European Journal of Applied Physiology

, Volume 115, Issue 8, pp 1813–1823 | Cite as

The effect of walking while typing on neck/shoulder patterns

  • Larissa M. Fedorowich
  • Kim Emery
  • Julie N. Côté
Original Article

Abstract

Purpose

This project aimed to quantify the effects of modifying computer work posture on neck/shoulder patterns during a prolonged typing task.

Method

Twenty healthy participants completed a 90-min typing task while sitting or walking on a treadmill. Electromyography (EMG) was recorded from eight upper body muscles and laser Doppler flowmetry (LDF) from two upper body sites. Effects of Time and Posture were assessed for EMG amplitude (RMS), variability (CoV), normalized mutual information (NMI), LDF and upper limb discomfort.

Results

Upper limb discomfort was higher during sitting and increased with time, from 0.86 ± 1.3 to 3.7 ± 3.1 out of 10. Interaction effects showed that EMG amplitude decreased over time for the lumbar erector spinae (LES) (from 6.3 ± 2.9 to 5.6 ± 3.2 % MIVC) and wrist extensor (from 12.4 ± 2.7 to 11.3 ± 3.5 % MIVC) during walking, but increased during sitting. Anterior Deltoid EMG amplitude was 64 % lower during walking while External Oblique EMG amplitude (43 %) and Lower Trapezius EMG variability (65 %) were higher during walking. Interaction effects showed higher LES CoV during walking compared to sitting (p = 0.019) in the beginning but not at the end of the task, and higher neck/shoulder NMI (p = 0.050) towards the end of the task during sitting compared to walking.

Conclusion

Results suggest that walking while performing computer work may be effective in inducing healthier muscular patterns, possibly explaining the lower level of discomfort compared to sitting.

Keywords

Discomfort Computer work EMG Treadmill Neck/shoulder Blood flow 

Abbreviations

AD

Anterior deltoid

ANOVA

Analysis of variance

AWPM

Adjusted words per minute

CES

Cervical erector spinae

CoV

Coefficient of variation

EMG

Electromyography

EO

External oblique

FLDF

Forearm laser Doppler flowmetry

LDF

Laser Doppler flowmetry

LES

Lumbar erector spinae

LT

Lower trapezius

MI

Mutual information

MIVC

Maximum isometric voluntary contractions

MSDs

Musculoskeletal disorders

MT

Middle trapezius

NMI

Normalized mutual information

PSS

Perceived stress scale

RMS

Root-mean-square

SLDF

Shoulder laser Doppler flowmetry

UL

Upper limb

UT

Upper trapezius

WaW

Walk-and-work

Wext

Wrist extensor

WRMSD

Work-related musculoskeletal disorder

Notes

Acknowledgments

In addition to the participants in the study, the authors wish to thank David Antle, Amanda Farias and Zach Weber for their assistance in data collection and analyses. This research was supported by grant Grants from the Canadian Foundation for Innovation and the Institut de Recherche Robert-Sauvé en Santé etenSécurité du Travail (IRSST). Julie Côté holds a Gender, Work and HealthResearch Chair from the Canadian Institutes for HealthResearch and the IRSST.

Conflict of interest

No author has financial or personal conflicts of interest that could inappropriately influence their work.

References

  1. Aaras A, Fostervold KI, Ro O, Thoresen M, Larsen S (1997) Postural load during VDU work: a comparison between various work postures. Ergonomics 40:1255–1268. doi: 10.1080/001401397187496 PubMedCrossRefGoogle Scholar
  2. Andersen LL, Blangsted AK, Nielsen PK, Hansen L, Vedsted P, Sjogaard G, Sogaard K (2010) Effect of cycling on oxygenation of relaxed neck/shoulder muscles in women with and without chronic pain. Eur J Appl Physiol 110:389–394. doi: 10.1007/s00421-010-1517-4 PubMedCrossRefGoogle Scholar
  3. Antle DM, Cote JN (2013) Relationships between lower limb and trunk discomfort and vascular, muscular and kinetic outcomes during stationary standing work. Gait Posture 37:615–619. doi: 10.1016/j.gaitpost.2012.10.004 PubMedCrossRefGoogle Scholar
  4. Basmajian JV, Blumenstein R (1980) Electrode placement in EMG biofeedback. Williams & Wilkins, BaltimoreGoogle Scholar
  5. Ben-Ner A, Hamann DJ, Koepp G, Manohar CU, Levine J (2014) Treadmill workstations: the effects of walking while working on physical activity and work performance. PLoS ONE 9(2):e88620. doi: 10.1371/journal.pone.0088620 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Blangsted AK, Sogaard K, Christensen H, Sjogaard G (2004) The effect of physical and psychosocial loads on the trapezius muscle activity during computer keying tasks and rest periods. Eur J Appl Physiol 91:253–258. doi: 10.1007/s00421-003-0979-z PubMedCrossRefGoogle Scholar
  7. Cagnie B, Danneels L, Van Tiggelen D, De Loose V, Cambier D (2007) Individual and work related risk factors for neck pain among office workers: a cross sectional study. Eur Spine J 16:679–686. doi: 10.1007/s00586-006-0269-7 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cohen S, Williamson GM (1988) Perceived stress in a probability sample of the United-States. In: Spacapam S, Oskamp S (eds) The social psychology of health. Sage, Newbury ParkGoogle Scholar
  9. Cooper A, Straker L (1998) Mouse versus keyboard use: a comparison of shoulder muscle load. Int J Ind Ergonom 22:351–357. doi: 10.1016/s0169-8141(97)00088-7 CrossRefGoogle Scholar
  10. Fedorowich L, Emery K, Gervasi B, Cote JN (2013) Gender differences in neck/shoulder muscular patterns in response to repetitive motion induced fatigue. J Electromyogr Kinesiol 23:1183–1189. doi: 10.1016/j.jelekin.2013.06.005 PubMedCrossRefGoogle Scholar
  11. Forde MS, Punnett L, Wegman DH (2002) Pathomechanisms of work-related musculoskeletal disorders: conceptual issues. Ergonomics 45:619–630. doi: 10.1080/00140130210153487 PubMedCrossRefGoogle Scholar
  12. Funk RE, Taylor ML, Creekmur CC, Ohlinger CM, Cox RH, Berg WP (2012) Effect of walking speed on typing performance using an active workstation. Percept Motor Skill 115:309–318. doi: 10.2466/06.23.26.pms.115.4.309-318 CrossRefGoogle Scholar
  13. Grandjean E, Kroemer KHE (1997) Fitting the task to the human: A textbook of occupational ergonomics, 5th edn. Taylor & Francis, PhiladelphiaGoogle Scholar
  14. Green D, Cheetham C, Mavaddat L, Watts K, Best M, Taylor R, O’Driscoll G (2002) Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol-Heart C 283:H899–H907. doi: 10.1152/ajpheart.00049.2002 CrossRefGoogle Scholar
  15. Jeong J, Gore JC, Peterson BS (2001) Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin Neurophysiol 112:827–835PubMedCrossRefGoogle Scholar
  16. Johansen TI, Samani A, Antle DM, Cote JN, Madeleine P (2013) Gender effects on the coordination of subdivisions of the trapezius muscle during a repetitive box-folding task. Eur J Appl Physiol 113:175–182. doi: 10.1007/s00421-012-2425-6 PubMedCrossRefGoogle Scholar
  17. Johansson H, Sjolander P, Djupsjobacka M, Bergenheim M, Pedersen J (1999) Pathophysiological mechanisms behind work-related muscle pain syndromes. Am J Ind Med 36:104–106CrossRefGoogle Scholar
  18. John D, Bassett D, Thompson D, Fairbrother J, Baldwin D (2009) Effect of using a treadmill workstation on performance of simulated office work tasks. J Phys Act Hea 6:617–624Google Scholar
  19. Keller K, Corbett J, Nichols D (1998) Repetitive strain injury in computer keyboard users: pathomechanics and treatment principles in individual and group intervention. J Hand Ther 11:9–26PubMedCrossRefGoogle Scholar
  20. Kleine BU, Schumann NP, Bradl I, Grieshaber R, Scholle HC (1999) Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units. Int Arch Occ Environ Health 72:387–394. doi: 10.1007/s004200050390 CrossRefGoogle Scholar
  21. Kojadinovic I (2005) Relevance measures for subset variable selection in regression problems based on k-additive mutual information. Comput Stat Data Anal 49:1205–1227. doi: 10.1016/j.csda.2004.07.026 CrossRefGoogle Scholar
  22. Larsson B, Sogaard K, Rosendal L (2007) Work related neck-shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventive interventions. Best Pract Res Clin Rheumatol 21:447–463. doi: 10.1016/j.berh.2007.02.015 PubMedCrossRefGoogle Scholar
  23. Latash ML, Scholz JP, Schoner G (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31. doi: 10.1097/00003677-200201000-00006 PubMedCrossRefGoogle Scholar
  24. Levine JA, Miller JM (2007) The energy expenditure of using a “walk-and-work” desk for office workers with obesity. Br J Sports Med 41:558–561. doi: 10.1136/bjsm.2006.032755 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Madeleine P, Mathiassen SE, Arendt-Nielsen L (2008a) Changes in the degree of motor variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Exp Brain Res 185:689–698. doi: 10.1007/s00221-007-1199-2 PubMedCrossRefGoogle Scholar
  26. Madeleine P, Voigt M, Mathiassen SE (2008b) The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics 51:1078–1095. doi: 10.1080/00140130801958659 PubMedCrossRefGoogle Scholar
  27. Madeleine P, Samani A, Binderup AT, Stensdotter AK (2011) Changes in the spatio-temporal organization of the trapezius muscle activity in response to eccentric contractions. Scand J Med Sci Sports 21:277–286. doi: 10.1111/j.1600-0838.2009.01037.x PubMedCrossRefGoogle Scholar
  28. Mathiassen SE, Moller T, Forsman M (2003) Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics 46:800–824. doi: 10.1080/0014013031000090125 PubMedCrossRefGoogle Scholar
  29. Messing KVN, Major M, Ouellet S, Tissot F, Couture V et al (2008) Body maps: an indicator of physical pain for worker-oriented ergonomic interventions. Pol Pract Health Safety 6:31–49Google Scholar
  30. Mork PJ, Westgaard RH (2009) Back posture and low back muscle activity in female computer workers: a field study. Clin Biomech 24:169–175. doi: 10.1016/j.clinbiomech.2008.11.001 CrossRefGoogle Scholar
  31. Moseley GL, Hodges PW (2006) Reduced variability of postural strategy prevents normalization of motor changes induced by back pain: a risk factor for chronic trouble? Behav Neurosci 120:474–476. doi: 10.1037/0735-7044.120.2.474 PubMedCrossRefGoogle Scholar
  32. Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122PubMedCrossRefGoogle Scholar
  33. Roe C, Knardahl S (2002) Muscle activity and blood flux during standardised data-terminal work. Int J Ind Ergonom 30:251–264. doi: 10.1016/s0169-8141(02)00129-4 CrossRefGoogle Scholar
  34. Stock S, Funes A, DelisleA, St-Vincent M, Turcot A, Messing M (2011) Troubles musculo-squelettiques. In: Vézina M et al. Enquête québécoise sur des conditions de travail, d’emploi, et de santé et de sécurité du travail (EQCOTESST), Chapitre 7. Institut de recherche Robert-Sauvé en santé et sécurité du travail—Institut national de santé publique du Québec et Institut de la statistique du QuébecGoogle Scholar
  35. Straker L, Levine J, Campbell A (2009) the effects of walking and cycling computer workstations on keyboard and mouse performance. Hum Factors 51:831–844. doi: 10.1177/0018720810362079 PubMedCrossRefGoogle Scholar
  36. Strom V, Knardahl S, Stanghelle JK, Roe C (2009a) Pain induced by a single simulated office-work session: time course and association with muscle blood flux and muscle activity. Eur J Pain 13:843–852. doi: 10.1016/j.ejpain.2008.11.003 PubMedCrossRefGoogle Scholar
  37. Strom V, Roe C, Knardahl S (2009b) Work-induced pain, trapezius blood flux, and muscle activity in workers with chronic shoulder and neck pain. Pain 144:147–155. doi: 10.1016/j.pain.2009.04.002 PubMedCrossRefGoogle Scholar
  38. Svendsen JH, Samani A, Mayntzhusen K, Madeleine P (2011) Muscle coordination and force variability during static and dynamic tracking tasks. Hum Movement Sci 30:1039–1051. doi: 10.1016/j.humov.2011.02.001 CrossRefGoogle Scholar
  39. Tanaka H, Shimizu S, Ohmori F, Muraoka Y, Kumagai M, Yoshizawa M, Kagaya A (2006) Increases in blood flow and shear stress to nonworking limbs during incremental exercise. Med Sci Sport Exer 38:81–85. doi: 10.1249/01.mss.0000191166.81789.de CrossRefGoogle Scholar
  40. Thompson WG, Foster RC, Eide DS, Levine JA (2008) Feasibility of a walking workstation to increase daily walking. Br J Sports Med 42:225–228. doi: 10.1136/bjsm.2007.039479 (discussion 228)PubMedCrossRefGoogle Scholar
  41. Wilke HJ, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data - a data set for the validation of models. ClinBiomech 16:S111–S126. doi: 10.1016/s0268-0033(00)00103-0 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Larissa M. Fedorowich
    • 1
    • 2
  • Kim Emery
    • 1
    • 2
  • Julie N. Côté
    • 1
    • 2
  1. 1.Department of Kinesiology and Physical EducationMcGill UniversityMontrealCanada
  2. 2.Feil and Oberfeld/CRIR Research CenterJewish Rehabilitation HospitalLavalCanada

Personalised recommendations