European Journal of Applied Physiology

, Volume 115, Issue 7, pp 1533–1545 | Cite as

Heart rate variability and critical flicker fusion frequency changes during and after parachute jumping in experienced skydivers

  • M. CavaladeEmail author
  • V. Papadopoulou
  • S. Theunissen
  • C. Balestra
Original Article



The purpose of this study was (1) to further explore the heart rate dynamics and assess a potential cardiovascular risk in response to 4000 m jumps in experienced skydivers; (2) to assess whether there is an impact of such jumps on skydivers’ cortical arousal or not, which may impact their decision making processes.


18 experienced skydivers performed successive jumps from a plane at 4000 m of height. Heart rate dynamics and cortical arousal were assessed by the use of heart rate variability and Critical Flicker Fusion Frequency (CFFF), respectively.


CFFF did not differ between the three measurement time points (p > 0.05). Mean heart rate increased during the jump (p < 0.001) and came back to pre-jump values after the jump (p < 0.001). Percentage of the differences of successive NN intervals greater than 50 ms (pNN50) decreased during the jump (p < 0.001) and kept lower values after the jump compared to pre-jump (p < 0.05). High-frequency power (HF) did not differ during the jump (p > 0.05) but decreased after the jump compared to both pre-jump (p < 0.01) and jump (p < 0.05). Sample entropy decreased during the jump (p < 0.001) and came back to pre-jump values after the jump (p > 0.05).


These results confirm a vagal input reduction associated with a rise of the sympathetic tone during the jump and suggests that the experienced skydiver is not exposed to a high cardiovascular risk. This study also shows that environmental stresses induced by free fall could not hamper the perceptual vigilance of experienced skydivers.


Human Free fall Non-linear analysis Fractal Adverse effects Environmental stress Autonomic nervous system Physiology 



Analysis of variance


Autonomic nervous system


Critical flicker fusion frequency






Fractal dimension




Light-emitting diode


Low-frequency power


High-frequency power


Heart rate


Heart rate variability


Percentage of the differences of successive NN intervals greater than 50 ms


Square root of the mean squared differences between successive RR intervals


Respiratory sinusal arythmia


Sample entropy


Standard deviation of the points perpendicular to the line-of-identity of the Poincaré plot


Standard deviation along the line-of-identity of the Poincaré plot



The authors would like to thank the Ecole Française de parachute Midi Pyrénées “Bouloc Skydive” and all the subjects who participated in this study, as well as Nicolas Marrone for kindly designing Fig. 1. The authors would also like to acknowledge the PHYPODE project, financed by the European Commission under the FP7-PEOPLE-2010-ITN program (Grant Agreement No. 264816).

Conflict of interest



  1. Acharya U, Kannathal N, Sing O, Ping L, Chua T (2004) Heart rate analysis in normal subject of various age groups. Biomed Eng Online 3(1):24Google Scholar
  2. Acharya UR, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44(12):1031–1051Google Scholar
  3. Ainslie PN, Barach A, Murrell C, Hamlin M, Hellemans J, Ogoh S (2007) Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol 292(2):H976–H983. doi: 10.1152/ajpheart.00639.2006 PubMedGoogle Scholar
  4. Ali MR, Khaleque A, Khanam M, al-Shatti A, Ahmed RU (1994) Critical flicker frequency of mentally retarded and normal persons. Percept Mot Skills 79(3 Pt 1):1235–1238PubMedGoogle Scholar
  5. Allison AP, Peres JC, Boettger C, Leonbacher U, Shitcliff A, Elizabeth A (2012) Fight, flight, or fall: autonomic nervous system reactivity during skydiving. Personal Individ Diff 53:218–223Google Scholar
  6. Analitis A, Katsouyanni K, Biggeri A, Baccini M, Forsberg B, Bisanti L, Kirchmayer U, Ballester F, Cadum E, Goodman PG, Hojs A, Sunyer J, Tiittanen P, Michelozzi P (2008) Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am J Epidemiol 168(12):1397–1408. doi: 10.1093/aje/kwn266 PubMedGoogle Scholar
  7. Balestra C, Lafere P, Germonpre P (2012) Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis? Eur J Appl Physiol 112(12):4063–4068. doi: 10.1007/s00421-012-2391-z PubMedGoogle Scholar
  8. Berger RD, Akselrod S, Gordon D, Cohen RJ (1986) An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng 33(9):900–904. doi: 10.1109/TBME.1986.325789 PubMedGoogle Scholar
  9. Borresen J, Lambert MI (2008) Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 38(8):633–646PubMedGoogle Scholar
  10. Brennan M, Palaniswami M, Kamen P (2002) Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 283(5):H1873–H1886. doi: 10.1152/ajpheart.00405.2000 PubMedGoogle Scholar
  11. Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol 75(5):2310–2317PubMedGoogle Scholar
  12. Buchheit M, Richard R, Doutreleau S, Lonsdorfer-Wolf E, Brandenberger G, Simon C (2004) Effect of acute hypoxia on heart rate variability at rest and during exercise. Int J Sports Med 25(4):264–269. doi: 10.1055/s-2004-819938 PubMedGoogle Scholar
  13. Butler GC, Yamamoto Y, Xing HC, Northey DR, Hughson RL (1993) Heart rate variability and fractal dimension during orthostatic challenges. J Appl Physiol 75(6):2602–2612PubMedGoogle Scholar
  14. Cavenett T, Nixon RD (2006) The effect of arousal on memory for emotionally-relevant information: a study of skydivers. Behav Res Ther 44(10):1461–1469. doi: 10.1016/j.brat.2005.11.002 PubMedGoogle Scholar
  15. Chang TT, Ciuffreda KJ, Kapoor N (2007) Critical flicker frequency and related symptoms in mild traumatic brain injury. Brain Injury 21(10):1055–1062. doi: 10.1080/02699050701591437 PubMedGoogle Scholar
  16. Chatterton RT Jr, Vogelsong KM, Lu YC, Hudgens GA (1997) Hormonal responses to psychological stress in men preparing for skydiving. J Clin Endocrinol Metab 82(8):2503–2509. doi: 10.1210/jcem.82.8.4133 PubMedGoogle Scholar
  17. Chen YC, Lin FC, Shiao GM, Chang SC (2008) Effect of rapid ascent to high altitude on autonomic cardiovascular modulation. Am J Med Sci 336(3):248–253. doi: 10.1097/MAJ.0b013e3181629a32 PubMedGoogle Scholar
  18. Cowan MJ (1995) Measurement of heart rate variability. West J Nurs Res 17(1):32–48 (discussion 101–111)PubMedGoogle Scholar
  19. Cripps TR, Malik M, Farrell TG, Camm AJ (1991) Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method. Br Heart J 65(1):14–19PubMedCentralPubMedGoogle Scholar
  20. Davranche KP, Pichon A (2005) Critical flicker frequency threshold increment after an exhausting exercise. J Sport Exerc Psychol 27:515–520Google Scholar
  21. Deinzer R, Kirschbaum C, Gresele C, Hellhammer DH (1997) Adrenocortical responses to repeated parachute jumping and subsequent h-CRH challenge in inexperienced healthy subjects. Physiol Behav 61(4):507–511PubMedGoogle Scholar
  22. Dikecligil GN, Mujica-Parodi LR (2010) Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol Psychiatry 67(12):1185–1190. doi: 10.1016/j.biopsych.2010.02.001 PubMedCentralPubMedGoogle Scholar
  23. Fenz WD, Epstein S (1967) Gradients of physiological arousal in parachutists as a function of an approaching jump. Psychosom Med 29(1):33–51PubMedGoogle Scholar
  24. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347(9011):1312–1314PubMedGoogle Scholar
  25. Goldberger AL (2006) Giles f. Filley lecture. Complex systems. Proc Am Thoracic Soc 3(6):467–471. doi: 10.1513/pats.200603-028MS Google Scholar
  26. Goldberger AL, West BJ (1987) Fractals in physiology and medicine. Yale J Biol Med 60(5):421–435PubMedCentralPubMedGoogle Scholar
  27. Gorman JM, Sloan RP (2000) Heart rate variability in depressive and anxiety disorders. Am Heart J 140(4 Suppl):77–83PubMedGoogle Scholar
  28. Goseki Y, Matsubara T, Takahashi N, Takeuchi T, Ibukiyama C (1994) Heart rate variability before the occurrence of silent myocardial ischemia during ambulatory monitoring. Am J Cardiol 73(12):845–849PubMedGoogle Scholar
  29. Granberg PO (1991) Human physiology under cold exposure. Arctic Med Res 50(suppl 6):23–27PubMedGoogle Scholar
  30. Grossman P (1983) Respiration, stress, and cardiovascular function. Psychophysiology 20(3):284–300PubMedGoogle Scholar
  31. Hare OA, Wetherell MA, Smith MA (2013) State anxiety and cortisol reactivity to skydiving in novice versus experienced skydivers. Physiol Behav 118:40–44. doi: 10.1016/j.physbeh.2013.05.011 PubMedGoogle Scholar
  32. Hayano J, Takahashi H, Toriyama T, Mukai S, Okada A, Sakata S, Yamada A, Ohte N, Kawahara H (1999) Prognostic value of heart rate variability during long-term follow-up in chronic haemodialysis patients with end-stage renal disease. Nephrol Dial Transplant 14(6):1480–1488PubMedGoogle Scholar
  33. Hemelryck W, Rozloznik M, Germonpre P, Balestra C, Lafere P (2013) Functional comparison between critical flicker fusion frequency and simple cognitive tests in subjects breathing air or oxygen in normobaria. Diving Hyperb Med J South Pacific Underw Med Soc 43(3):138–142Google Scholar
  34. Hindmarch I (1982) Critical flicker fusion frequency (CFF): the effects of psychotropic compounds. Pharmacopsychiatry 15:44–48Google Scholar
  35. Hindmarch I (1988) Information processing, critical flicker fusion threshold and benzodiazepines: results and speculations. Psychopharmacol Ser 6:79–89PubMedGoogle Scholar
  36. Hnatkova K, Copie X, Staunton A, Malik M (1995) Numeric processing of Lorenz plots of R-R intervals from long-term ECGs. Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J Electrocardiol 28(Suppl):74–80PubMedGoogle Scholar
  37. Hou RH, Langley RW, Szabadi E, Bradshaw CM (2007) Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers. J Psychopharmacol 21(6):567–578. doi: 10.1177/0269881106071022 PubMedGoogle Scholar
  38. Hultgren HN (1992) Effects of altitude upon cardiovascular diseases. J Wilderness Med 3(3):301–308Google Scholar
  39. Hunter KM, Zacharias M, Parkinson R, Luyk NH (1994) Effect of flumazenil on the recovery from intravenous midazolam. N Z Dental J 90(399):9–12Google Scholar
  40. Hynynen E, Konttinen N, Rusko H (2009) Heart rate variability and stress hormones in novice and experienced parachutists anticipating a jump. Aviat Space Environ Med 80(11):976–980PubMedGoogle Scholar
  41. Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci 91(2):201–208PubMedGoogle Scholar
  42. Kanai M, Nishihara F, Shiga T, Shimada H, Saito S (2001) Alterations in autonomic nerve control of heart rate among tourists at 2700 and 3700 m above sea level. Wilderness Environ Med 12:8–12PubMedGoogle Scholar
  43. Karmakar CK, Khandoker AH, Voss A, Palaniswami M (2011) Sensitivity of temporal heart rate variability in Poincare plot to changes in parasympathetic nervous system activity. Biomed Eng Online 10:17. doi: 10.1186/1475-925X-10-17 PubMedCentralPubMedGoogle Scholar
  44. Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35(2):357–366. doi: 10.1053/jhep.2002.30957 PubMedGoogle Scholar
  45. Kitney RI, Fulton T, McDonald AH, Linkens DA (1985) Transient interactions between blood pressure, respiration and heart rate in man. J Biomed Eng 7(3):217–224PubMedGoogle Scholar
  46. Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL (1991) Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 68(6):626–630PubMedGoogle Scholar
  47. Kleiger RE, Stein PK, Bosner MS, Rottman JN (1992) Time domain measurements of heart rate variability. Cardiol Clin 10(3):487–498PubMedGoogle Scholar
  48. Krstacic G, Krstacic A, Smalcelj A, Milicic D, Jembrek-Gostovic M (2007) The “Chaos Theory” and nonlinear dynamics in heart rate variability analysis: does it work in short-time series in patients with coronary heart disease? Ann Noninvasive Electrocardiol 12(2):130–136. doi: 10.1111/j.1542-474X.2007.00151.x PubMedGoogle Scholar
  49. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 283(3):R789–R797. doi: 10.1152/ajpregu.00069.2002 PubMedGoogle Scholar
  50. Lal SK, Craig A (2002) Driver fatigue: electroencephalography and psychological assessment. Psychophysiology 39(3):313–321 doi:10.1017.S0048577201393095PubMedGoogle Scholar
  51. Lauridsen MM, Jepsen P, Vilstrup H (2011) Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy: a comparative study of 154 patients with liver disease. Metab Brain Dis 26(2):135–139. doi: 10.1007/s11011-011-9242-1 PubMedGoogle Scholar
  52. Leach JG, Griffith R (2008) Restrictions in working memory capacity during parachuting: a possible cause of ‘no pull’ failures. Appl Cogn Psychol 57:147–157Google Scholar
  53. Leigh G (1982) The combined effects of alcohol consumption and cigarette smoking on critical flicker frequency. Addict Behav 7(3):251–259PubMedGoogle Scholar
  54. Lepoluoto A, Nino J, Tahvanainen K, Ylitalo R, Kuusela T, Kahonen M, Kaila T (2005) Propranolol increases the complexity of heart rate fluctuations–a mode of antiarrhythmic action? Int J Clin Pharmacol Ther 43(2):101–108PubMedGoogle Scholar
  55. Lewis MJ, Short AL (2007) Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiol Meas 28(6):731–744. doi: 10.1088/0967-3334/28/6/011 PubMedGoogle Scholar
  56. Liu YC, Ho CH (2010) Effects of different blood alcohol concentrations and post-alcohol impairment on driving behavior and task performance. Traffic Injury Prev 11(4):334–341. doi: 10.1080/15389581003747522 Google Scholar
  57. Liu XX, Lu LL, Zhong CF, Cheng ZH, Yuan Q, Ren HR (2001) Analysis of heart rate variability during acute exposure to hypoxia. Space Med Med Eng 14(5):328–331Google Scholar
  58. Luczak A, Sobolewski A (2005) Longitudinal changes in critical flicker fusion frequency: an indicator of human workload. Ergonomics 48(15):1770–1792. doi: 10.1080/00140130500241753 PubMedGoogle Scholar
  59. Luczak A, Kurkus-Rozowska B, Sobolewski A (1995) Flicker test as a load measurement during the combined effect of heat and noise. Int J Occup Saf Ergon 1(2):160–166PubMedGoogle Scholar
  60. Magagnin V, Bassani T, Bari V, Turiel M, Maestri R, Pinna GD, Porta A (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786. doi: 10.1088/0967-3334/32/11/S05 PubMedGoogle Scholar
  61. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492PubMedGoogle Scholar
  62. Malliani A, Lombardi F, Pagani M (1994) Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. Br Heart J 71(1):1–2PubMedCentralPubMedGoogle Scholar
  63. Manfrini O, Pizzi C, Trere D, Fontana F, Bugiardini R (2003) Parasympathetic failure and risk of subsequent coronary events in unstable angina and non-ST-segment elevation myocardial infarction. Eur Heart J 24(17):1560–1566PubMedGoogle Scholar
  64. Mogford JE, Tawil N, Chen A, Gies D, Xia Y, Mustoe TA (2002) Effect of age and hypoxia on TGFbeta1 receptor expression and signal transduction in human dermal fibroblasts: impact on cell migration. J Cell Physiol 190(2):259–265. doi: 10.1002/jcp.10060 PubMedGoogle Scholar
  65. Mujica-Parodi LR, Renelique R, Taylor MK (2009a) Higher body fat percentage is associated with increased cortisol reactivity and impaired cognitive resilience in response to acute emotional stress. Int J Obesity 33(1):157–165. doi: 10.1038/ijo.2008.218 Google Scholar
  66. Mujica-Parodi LR, Strey HH, Frederick B, Savoy R, Cox D, Botanov Y, Tolkunov D, Rubin D, Weber J (2009b) Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS One 4(7):e6415. doi: 10.1371/journal.pone.0006415 PubMedCentralPubMedGoogle Scholar
  67. Mullen TJ, Appel ML, Mukkamala R, Mathias JM, Cohen RJ (1997) System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade. Am J Physiol 272(1 Pt 2):H448–H461PubMedGoogle Scholar
  68. Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28(7):1652–1660. doi: 10.1016/S0735-1097(96)00393-2 PubMedGoogle Scholar
  69. Nielsen B, Hyldig T, Bidstrup F, Gonzalez-Alonso J, Christoffersen GR (2001) Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch 442(1):41–48PubMedGoogle Scholar
  70. Nunes Amaral LA, Goldberger AL, Ivanov P, Stanley HE (1998) Scale-independent measures and pathologic cardiac dynamics. Phys Rev Lett 81(11):2388–2391PubMedGoogle Scholar
  71. Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H (2001) Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol 21(3):365–376PubMedGoogle Scholar
  72. Penttila J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Scheinin H (2003) Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics. Auton Autacoid Pharmacol 23(3):173–179PubMedGoogle Scholar
  73. Pincus S (1995) Approximate entropy (ApEn) as a complexity measure. Chaos 5(1):110–117. doi: 10.1063/1.166092 PubMedGoogle Scholar
  74. Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol 266(4 Pt 2):H1643–H1656PubMedGoogle Scholar
  75. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345PubMedGoogle Scholar
  76. Porges SW (1995) Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev 19(2):225–233PubMedGoogle Scholar
  77. Porta A, D’Addio G, Guzzetti S, Lucini D, Pagani M (2004) Testing the presence of non stationarities in short heart rate variability series. Comput Cardiol 31:645–648Google Scholar
  78. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007a) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149. doi: 10.1152/japplphysiol.00293.2007 PubMedGoogle Scholar
  79. Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007b) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54(1):94–106. doi: 10.1109/TBME.2006.883789 PubMedGoogle Scholar
  80. Radespiel-Troger M, Rauh R, Mahlke C, Gottschalk T, Muck-Weymann M (2003) Agreement of two different methods for measurement of heart rate variability. Clin Auton Res 13(2):99–102. doi: 10.1007/s10286-003-0085-7 PubMedGoogle Scholar
  81. Reid DH, Doerr JE, Doshier HD, Ellertson DG (1971) Heart rate and respiration rate response to parachuting: physiological studies of military parachutists via FM-FM telemetry. II. Aerosp Med 42(11):1200–1207PubMedGoogle Scholar
  82. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049PubMedGoogle Scholar
  83. Roche F, Reynaud C, Garet M, Pichot V, Costes F, Barthelemy JC (2002) Cardiac baroreflex control in humans during and immediately after brief exposure to simulated high altitude. Clin Physiol Funct Imaging 22:301–306PubMedGoogle Scholar
  84. Rota-Bartelink A (1999) The diagnostic value of automated flicker threshold perimetry. Curr Opin Ophthalmol 10(2):135–139PubMedGoogle Scholar
  85. Roth WT, Breivik G, Jorgensen PE, Hofmann S (1996) Activation in novice and expert parachutists while jumping. Psychophysiology 33(1):63–72PubMedGoogle Scholar
  86. Saito S, Tanobe K, Yamada M, Nishihara F (2005) Relationship between arterial oxygen saturation and heart rate variability at high altitude. Am J Emerg Med 23:8–12PubMedGoogle Scholar
  87. Salib Y, Plourde G, Alloul K, Provost A, Moore A (1992) Measuring recovery from general anaesthesia using critical flicker frequency: a comparison of two methods. Can J anaesth 39(10):1045–1050. doi: 10.1007/BF03008373 PubMedGoogle Scholar
  88. Schedlowski M, Tewes U (1992) Physiological arousal and perception of bodily state during parachute jumping. Psychophysiology 29(1):95–103PubMedGoogle Scholar
  89. Schillaci C, Fazio O (1967) Critical fusion frequency. Its changes after ingestion of alcohol. Bollettino d’oculistica 46(10):772–782Google Scholar
  90. Seki K, Hugon M (1976) Critical flicker frequency (CFF) and subjective fatigue during an oxyhelium saturation dive at 62 ATA. Undersea Biomed Res 3(3):235–247PubMedGoogle Scholar
  91. Shane WP, Slinde KE (1968) Continuous ECG recording during free-fall parachuting. Aerosp Med 39(6):597–603PubMedGoogle Scholar
  92. Sharma P, Singh S, Sharma BC, Kumar M, Garg H, Kumar A, Sarin SK (2011) Propofol sedation during endoscopy in patients with cirrhosis, and utility of psychometric tests and critical flicker frequency in assessment of recovery from sedation. Endoscopy 43(5):400–405 doi:10.1055PubMedGoogle Scholar
  93. Stein PK, Bosner MS, Kleiger RE, Conger BM (1994) Heart rate variability: a measure of cardiac autonomic tone. Am Heart J 127(5):1376–1381PubMedGoogle Scholar
  94. Struzik ZR, Hayano J, Sakata S, Kwak S, Yamamoto Y (2004) 1/f scaling in heart rate requires antagonistic autonomic control. Phys Rev E 70(5 Pt 1):050901Google Scholar
  95. Sztajzel J (2004) Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 134(35–36):514–522 (2004/35/smw-10321)PubMedGoogle Scholar
  96. Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA (2014) Kubios HRV–heart rate variability analysis software. Comput Methods Programs Biomed 113(1):210–220. doi: 10.1016/j.cmpb.2013.07.024 PubMedGoogle Scholar
  97. Task Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065Google Scholar
  98. Taverniers J, Smeets T, Lo Bue S, Syroit J, Van Ruysseveldt J, Pattyn N, von Grumbkow J (2011) Visuo-spatial path learning, stress, and cortisol secretion following military cadets’ first parachute jump: the effect of increasing task complexity. Cogn Affect Behav Neurosci 11(3):332–343. doi: 10.3758/s13415-011-0043-0 PubMedGoogle Scholar
  99. Truszczynski O, Wojtkowiak M, Biernacki M, Kowalczuk K (2009) The effect of hypoxia on the critical flicker fusion threshold in pilots. Int J Occup Med Environ Health 22(1):13–18. doi: 10.2478/v10001-009-0002-y PubMedGoogle Scholar
  100. Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271(1 Pt 2):H244–H252PubMedGoogle Scholar
  101. Tulppo MP, Makikallio TH, Seppanen T, Shoemaker K, Tutungi E, Hughson RL, Huikuri HV (2001) Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin Physiol 21(5):515–523PubMedGoogle Scholar
  102. Tytla ME, Trope GE, Buncic JR (1990) Flicker sensitivity in treated ocular hypertension. Ophthalmology 97(1):36–43PubMedGoogle Scholar
  103. Valentini M, Parati G (2009) Variables influencing heart rate. Prog Cardiovasc Dis 52(1):11–19. doi: 10.1016/j.pcad.2009.05.004 PubMedGoogle Scholar
  104. van Ravenswaaij-Arts CM, Kollee LA, Hopman JC, Stoelinga GB, van Geijn HP (1993) Heart rate variability. Ann Int Med 118(6):436–447PubMedGoogle Scholar
  105. Vanderlei LC, Silva RA, Pastre CM, Azevedo FM, Godoy MF (2008) Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res 41(10):854–859PubMedGoogle Scholar
  106. Vigo DE, Lloret SP, Videla AJ, Chada D, Hunichen H, Mercuri J, Romero R, Siri L, Cardinali D (2010) Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude. Wilderness Environ Med 20:4–10Google Scholar
  107. Wagner JA, Robinson S, Marino RP (1974) Age and temperature regulation of humans in neutral and cold environments. J Appl Physiol 37(4):562–565PubMedGoogle Scholar
  108. Wernberg M, Nielsen SF, Hommelgaard P (1980) A comparison between reaction time measurement and critical flicker fusion frequency under rising nitrous oxide inhalation in healthy subjects. Acta Anaesthesiol Scand 24(2):86–89PubMedGoogle Scholar
  109. Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71(3):1136–1142PubMedGoogle Scholar
  110. Yeragani VK, Srinivasan K, Vempati S, Pohl R, Balon R (1993) Fractal dimension of heart rate time series: an effective measure of autonomic function. J Appl Physiol 75(6):2429–2438PubMedGoogle Scholar
  111. Yeragani VK, Sobolewski E, Jampala VC, Kay J, Yeragani S, Igel G (1998) Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues. Clin Sci 95(3):295–301PubMedGoogle Scholar
  112. Zhang D, She J, Zhang Z, Yu M (2014) Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. Biomed Eng Online 13:73. doi: 10.1186/1475-925X-13-73 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Cavalade
    • 1
    Email author
  • V. Papadopoulou
    • 1
    • 2
  • S. Theunissen
    • 1
  • C. Balestra
    • 1
    • 3
  1. 1.Environmental, Occupational, Ageing and Integrative Physiology LaboratoryHaute Ecole Paul-Henri SpaakBrusselsBelgium
  2. 2.Department of BioengineeringImperial College LondonLondonUK
  3. 3.DAN Europe Research DivisionBrusselsBelgium

Personalised recommendations