European Journal of Applied Physiology

, Volume 115, Issue 5, pp 1015–1027 | Cite as

Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise

  • Hawley Kunz
  • Nicolette C. Bishop
  • Guillaume Spielmann
  • Mira Pistillo
  • Justin Reed
  • Teja Ograjsek
  • Yoonjung Park
  • Satish K. Mehta
  • Duane L. Pierson
  • Richard J. Simpson
Original Article



Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit.


Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to −5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of α-amylase, human neutrophil proteins 1–3 (HNP1–3) lactoferrin, LL-37, lysozyme, and salivary SIgA.


The concentration and/or secretion of all sAMPs increased post-exercise, but only α-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of α-amylase, HNP1–3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including α-amylase concentration (+107 %) and secretion (+148 %), HNP1–3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %).


We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation.


Innate mucosal immunity Salivary antimicrobial proteins Exercise intensity Fitness Exercise training 



Salivary antimicrobial protein


Upper respiratory tract infection


Secretory Immunoglobulin A


Human neutrophil peptide


Blood lactate threshold


Revolutions per minute


Rating of perceived exertion


Analysis of variance



This work was supported by NASA Grant NNX12AB48G to R.J. Simpson.

Conflict of interest

The authors declare no conflict of interest.


  1. Allgrove JE, Gomes E, Hough J, Gleeson M (2008) Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci 26(6):653–661. doi: 10.1080/02640410701716790 CrossRefPubMedGoogle Scholar
  2. Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23(2):327–333CrossRefPubMedGoogle Scholar
  3. Bartlett JA, Fischer AJ, McCray PB Jr (2008) Innate immune functions of the airway epithelium. Contrib Microbiol 15:147–163. doi: 10.1159/000136349 CrossRefPubMedGoogle Scholar
  4. Bishop NC, Gleeson M (2009) Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci (Landmark Ed) 14:4444–4456CrossRefGoogle Scholar
  5. Borg GA (1973) Perceived exertion: a note on “history” and methods. Med Sci Sports 5(2):90–93PubMedGoogle Scholar
  6. Bourdon P (2013) In: Tanner RK, Gore CJ (eds) Physiological tests for elite athletes, 2nd edn. Human Kinetics, Champaign, pp 77–102Google Scholar
  7. Bowdish DM, Davidson DJ, Hancock RE (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6(1):35–51CrossRefPubMedGoogle Scholar
  8. Calvo F, Chicharro JL, Bandres F, Lucia A, Perez M, Alvarez J, Mojares LL, Vaquero AF, Legido JC (1997) Anaerobic threshold determination with analysis of salivary amylase. Can J Appl Physiol 22(6):553–561CrossRefPubMedGoogle Scholar
  9. Chatterton RT Jr, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA (1996) Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 16(4):433–448CrossRefPubMedGoogle Scholar
  10. Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40(2):123–132. doi: 10.1016/j.jdermsci.2005.03.014 CrossRefPubMedGoogle Scholar
  11. Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R (1998) Saliva composition and exercise. Sports Med 26(1):17–27CrossRefPubMedGoogle Scholar
  12. Coote JH (2010) Recovery of heart rate following intense dynamic exercise. Exp Physiol 95(3):431–440. doi: 10.1113/expphysiol.2009.047548 CrossRefPubMedGoogle Scholar
  13. Dale BA, Tao R, Kimball JR, Jurevic RJ (2006) Oral antimicrobial peptides and biological control of caries. BMC Oral Health 6(Suppl 1):S13. doi: 10.1186/1472-6831-6-S1-S13 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Davison G, Allgrove J, Gleeson M (2009) Salivary antimicrobial peptides (LL-37 and alpha-defensins HNP1-3), antimicrobial and IgA responses to prolonged exercise. Eur J Appl Physiol 106(2):277–284. doi: 10.1007/s00421-009-1020-y CrossRefPubMedGoogle Scholar
  15. de Oliveira VN, Bessa A, Lamounier RP, de Santana MG, de Mello MT, Espindola FS (2010) Changes in the salivary biomarkers induced by an effort test. Int J Sports Med 31(6):377–381. doi: 10.1055/s-0030-1248332 CrossRefPubMedGoogle Scholar
  16. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27(18):1337–1347. doi: 10.1007/s10529-005-0936-5 CrossRefPubMedGoogle Scholar
  17. Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117(1):91–97. doi: 10.1046/j.1523-1747.2001.01340.x CrossRefPubMedGoogle Scholar
  18. Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 87(1):79–92. doi: 10.1189/jlb.0609382 CrossRefPubMedGoogle Scholar
  19. Fahlman MM, Engels HJ (2005) Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc 37(3):374–380CrossRefPubMedGoogle Scholar
  20. Fahlman MM, Engels HJ, Morgan AL, Kolokouri I (2001) Mucosal IgA response to repeated wingate tests in females. Int J Sports Med 22(2):127–131CrossRefPubMedGoogle Scholar
  21. Fortes MB, Diment BC, Di Felice U, Walsh NP (2012) Dehydration decreases saliva antimicrobial proteins important for mucosal immunity. Appl Physiol Nutr Metab 37(5):850–859. doi: 10.1139/h2012-054 CrossRefPubMedGoogle Scholar
  22. Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829. doi: 10.1097/mss.0b013e31803349c6 CrossRefPubMedGoogle Scholar
  23. Gillum T, Kuennen M, Miller T, Riley L (2014) The effects of exercise, sex, and menstrual phase on salivary antimicrobial proteins. Exerc Immunol Rev 20:23–38PubMedGoogle Scholar
  24. Gleeson M (2000) Mucosal immunity and respiratory illness in elite athletes. Int J Sports Med 21(Suppl 1):S33–S43CrossRefPubMedGoogle Scholar
  25. Gleeson M, Pyne DB (2000) Special feature for the Olympics: effects of exercise on the immune system: exercise effects on mucosal immunity. Immunol Cell Biol 78(5):536–544. doi: 10.1111/j.1440-1711.2000.t01-8-.x CrossRefPubMedGoogle Scholar
  26. Gleeson M, McDonald WA, Pyne DB, Cripps AW, Francis JL, Fricker PA, Clancy RL (1999) Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc 31(1):67–73CrossRefPubMedGoogle Scholar
  27. Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS (2012) Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports 22(3):410–417. doi: 10.1111/j.1600-0838.2010.01272.x CrossRefPubMedGoogle Scholar
  28. Hanson LA, Ahlstedt S, Andersson B, Carlsson B, Cole MF, Cruz JR, Dahlgren U, Ericsson TH, Jalil F, Khan SR, Mellander L, Schneerson R, Eden CS, Soderstrom T, Wadsworth C (1983) Mucosal immunity. Ann NY Acad Sci 409:1–21CrossRefPubMedGoogle Scholar
  29. Laube DM, Yim S, Ryan LK, Kisich KO, Diamond G (2006) Antimicrobial peptides in the airway. Curr Top Microbiol Immunol 306:153–182PubMedGoogle Scholar
  30. Leicht CA, Bishop NC, Goosey-Tolfrey VL (2011) Mucosal immune responses to treadmill exercise in elite wheelchair athletes. Med Sci Sports Exerc 43(8):1414–1421. doi: 10.1249/MSS.0b013e31820ac959 CrossRefPubMedGoogle Scholar
  31. Li TL, Gleeson M (2004) The effect of single and repeated bouts of prolonged cycling and circadian variation on saliva flow rate, immunoglobulin A and alpha-amylase responses. J Sports Sci 22(11–12):1015–1024CrossRefPubMedGoogle Scholar
  32. Markkanen H, Syrjanen SM, Alakuijala P (1986) Salivary IgA, lysozyme and beta 2-microglobulin in periodontal disease. Scand J Dent Res 94(2):115–120PubMedGoogle Scholar
  33. McCormick TS, Weinberg A (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 54(1):195–206. doi: 10.1111/j.1600-0757.2010.00373.x CrossRefGoogle Scholar
  34. Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34(4):486–496. doi: 10.1016/j.psyneuen.2009.01.014 CrossRefPubMedGoogle Scholar
  35. Neville V, Gleeson M, Folland JP (2008) Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc 40(7):1228–1236. doi: 10.1249/MSS.0b013e31816be9c3 CrossRefPubMedGoogle Scholar
  36. Nieman DC (2000) Is infection risk linked to exercise workload? Med Sci Sports Exerc 32(7 Suppl):S406–S411CrossRefPubMedGoogle Scholar
  37. Nieman DC, Henson DA, Dumke CL, Lind RH, Shooter LR, Gross SJ (2006) Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J Sports Med Phys Fit 46(1):158–162Google Scholar
  38. Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17(3):189–196CrossRefPubMedGoogle Scholar
  39. Papacosta E, Nassis GP (2011) Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport 14(5):424–434. doi: 10.1016/j.jsams.2011.03.004 CrossRefPubMedGoogle Scholar
  40. Purvis D, Gonsalves S, Deuster PA (2010) Physiological and psychological fatigue in extreme conditions: overtraining and elite athletes. PM R 2(5):442–450. doi: 10.1016/j.pmrj.2010.03.025 CrossRefPubMedGoogle Scholar
  41. Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360(9340):1144–1149. doi: 10.1016/S0140-6736(02)11201-3 CrossRefPubMedGoogle Scholar
  42. Raczak G, Danilowicz-Szymanowicz L, Kobuszewska-Chwirot M, Ratkowski W, Figura-Chmielewska M, Szwoch M (2006) Long-term exercise training improves autonomic nervous system profile in professional runners. Kardiol Pol 64(2):135–140 discussion 141-132PubMedGoogle Scholar
  43. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29(1):27–43CrossRefPubMedGoogle Scholar
  44. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39(2):377–390. doi: 10.1249/mss.0b013e31802ca597 CrossRefPubMedGoogle Scholar
  45. Steerenberg PA, van Asperen IA, van Nieuw Amerongen A, Biewenga A, Mol D, Medema GJ (1997) Salivary levels of immunoglobulin A in triathletes. Eur J Oral Sci 105(4):305–309CrossRefPubMedGoogle Scholar
  46. Tanida T, Okamoto T, Okamoto A, Wang H, Hamada T, Ueta E, Osaki T (2003) Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J Oral Pathol Med 32(10):586–594CrossRefPubMedGoogle Scholar
  47. Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA (2005) Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 49(9):3883–3888. doi: 10.1128/AAC.49.9.3883-3888.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Tenovuo JO (1989) Human saliva : clinical chemistry and microbiology. CRC Press, Boca RatonGoogle Scholar
  49. Tomasi TB, Trudeau FB, Czerwinski D, Erredge S (1982) Immune parameters in athletes before and after strenuous exercise. J Clin Immunol 2(3):173–178CrossRefPubMedGoogle Scholar
  50. Ueta E, Tanida T, Doi S, Osaki T (2000) Regulation of Candida albicans growth and adhesion by saliva. J Lab Clin Med 136(1):66–73. doi: 10.1067/mlc.2000.107304 CrossRefPubMedGoogle Scholar
  51. Usui T, Yoshikawa T, Orita K, Ueda SY, Katsura Y, Fujimoto S, Yoshimura M (2011) Changes in salivary antimicrobial peptides, immunoglobulin A and cortisol after prolonged strenuous exercise. Eur J Appl Physiol 111(9):2005–2014. doi: 10.1007/s00421-011-1830-6 CrossRefPubMedGoogle Scholar
  52. Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17(2):129–134. doi: 10.1080/026404199366226 CrossRefPubMedGoogle Scholar
  53. Weltman A (1995) The blood lactate response to exercise. Human Kinetics, ChampaignGoogle Scholar
  54. West NP, Pyne DB, Renshaw G, Cripps AW (2006) Antimicrobial peptides and proteins, exercise and innate mucosal immunity. FEMS Immunol Med Microbiol 48(3):293–304. doi: 10.1111/j.1574-695X.2006.00132.x CrossRefPubMedGoogle Scholar
  55. West NP, Pyne DB, Kyd JM, Renshaw GM, Fricker PA, Cripps AW (2010) The effect of exercise on innate mucosal immunity. Br J Sports Med 44(4):227–231. doi: 10.1136/bjsm.2008.046532 CrossRefPubMedGoogle Scholar
  56. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38(5):401–423CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hawley Kunz
    • 1
  • Nicolette C. Bishop
    • 1
    • 2
  • Guillaume Spielmann
    • 1
  • Mira Pistillo
    • 1
  • Justin Reed
    • 1
  • Teja Ograjsek
    • 1
  • Yoonjung Park
    • 1
  • Satish K. Mehta
    • 3
  • Duane L. Pierson
    • 1
    • 3
  • Richard J. Simpson
    • 1
  1. 1.Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonUSA
  2. 2.School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
  3. 3.Division of Biomedical and Environmental SciencesNASA Johnson Space CenterHoustonUSA

Personalised recommendations