Advertisement

European Journal of Applied Physiology

, Volume 114, Issue 11, pp 2299–2308 | Cite as

Post activation potentiation can be induced without impairing tendon stiffness

  • Paulo Gago
  • Anton Arndt
  • Olga Tarassova
  • Maria M. EkblomEmail author
Original Article

Abstract

Purpose

This study aimed to investigate conditioning effects from a single 6-s plantar flexion maximal voluntary isometric contraction (MVIC) on Achilles tendon stiffness (ATS) and twitch properties of the triceps surae in athletes.

Methods

Peak twitch (PT), rate of torque development (RTD), rising time (RT10–90%) and half relaxation time (HRT) were measured from supramaximal twitches evoked in the plantar flexors of 10 highly trained athletes. Twitches were evoked before and at seven occasions during 10 min of recovery after a 6-s MVIC. In a second session, but at identical post-conditioning time points, ATS was measured at 30 and 50 % of MVIC (ATS30% and ATS50%) using an ultrasonography-based method.

Results

The magnitude and duration of the conditioning MVIC on muscle contractile properties were in accordance with previous literature on post activation potentiation (PAP), i.e., high potentiation immediately after MVIC, with significant PAP for up to 3 min after the MVIC. While PT and RTD were significantly enhanced (by 60.6 ± 19.3 and 90.1 ± 22.5 %, respectively) and RT10–90% and HRT were reduced (by 10.1 ± 7.7 and 18.7 ± 5.6 %, respectively) after conditioning, ATS remained unaffected.

Conclusions

Previous studies have suggested that changes in stiffness after conditioning may interfere with the enhancements in twitch contractile properties. The present study, however, provided some evidence that twitch enhancements after a standard PAP can be induced without changes in ATS. This result may suggest that athletes can use this protocol to enhance muscle contractile properties without performance deficits due to changes in ATS.

Keywords

Potentiation Twitch Tendon Stiffness Isometric 

Abbreviations

ANOVA

Analysis of variance

ATS

Achilles tendon stiffness

ATS30%

Achilles tendon stiffness at 30 % of maximal voluntary isometric contraction

ATS50%

Achilles tendon stiffness at 50 % of maximal voluntary isometric contraction

CT

Control trials

EMG

Electromyography

Fig

Figure

Hz

Hertz

HRT

Half relaxation time

ICC2,k

Intra-class correlation coefficients

MVIC

Maximal voluntary isometric contraction

MG

Medial gastrocnemius

MHz

Mega hertz

M-wave

Compound muscle action potential

MTJ

Muscle–tendinous junction

Nm

Newton meter

Nm/mm

Newton meter per millimeter

PT

Peak torque

PAP

Post activation potentiation

RT10–90

Rising time

RMSEMG

Root mean square

RTD

Rate of torque development

s

Seconds

SOL

Soleus

TTP

Time to peak

TA

Tibialis anterior

Notes

Acknowledgments

This project was financially supported by the Swedish National Centre for Research in Sports (CIF) and Fundação para a Ciência e Tecnologia (FCT). Paulo Gago wishes to thank the Fundação para a Ciência e Tecnologia (FCT), Portugal for the Ph.D. grant SFRH/BD/79184/2011. We acknowledge Paul Sandamas´ contribution in developing the algorithm used for calculating Achilles tendon length.

Conflicts of interest

No conflicts of interests, financial or otherwise, are declared by the authors.

References

  1. Baudry S, Duchateau J (2004) Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle Nerve 30(3):328–336. doi: 10.1002/mus.20101 PubMedCrossRefGoogle Scholar
  2. Baudry S, Duchateau J (2007) Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol 102(4):1394–1401. doi: 10.1152/japplphysiol.01254.2006 PubMedCrossRefGoogle Scholar
  3. Baudry S, Klass M, Duchateau J (2005) Postactivation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol 98(4):1243–1250. doi: 10.1152/japplphysiol.00735.2004 PubMedCrossRefGoogle Scholar
  4. Behm DG, Button DC, Barbour G, Butt JC, Young WB (2004) Conflicting effects of fatigue and potentiation on voluntary force. J Strength Cond Res 18(2):365–372. doi: 10.1519/r-12982.1 PubMedGoogle Scholar
  5. Belanger AY, McComas AJ, Elder GB (1983) Physiological properties of two antagonist human muscle groups. Eur J Appl Physiol Occup Physiol 51(3):381–393PubMedCrossRefGoogle Scholar
  6. Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99(3):986–994. doi: 10.1152/japplphysiol.01305.2004 PubMedCrossRefGoogle Scholar
  7. Butler DL, Grood ES, Noyes FR, Zernicke RF (1978) Biomechanics of ligaments and tendons. Exerc Sport Sci Rev 6:125–181PubMedGoogle Scholar
  8. Chiu LZF, Fry AC, Weiss LW, Schilling BK, Brown LE, Smith SL (2003) Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res 17(4):671–677PubMedGoogle Scholar
  9. Davies CT, Mecrow IK, White MJ (1982) Contractile properties of the human triceps surae with some observations on the effects of temperature and exercise. Eur J Appl Physiol 49(2):255–269CrossRefGoogle Scholar
  10. Gago P, Marques MC, Marinho DA, Ekblom MM (2014) Passive muscle length changes affect twitch potentiation in power athletes. Med Sci Sports Exerc. doi: 10.1249/mss.0000000000000245 PubMedGoogle Scholar
  11. Garner SH, Hicks AL, McComas AJ (1989) Prolongation of twitch potentiating mechanism throughout muscle fatigue and recovery. Exp Neurol 103(3):277–281. doi: 10.1016/0014-4886(89)90051-4 PubMedCrossRefGoogle Scholar
  12. Hamada TS, Digby Macdougall JD (2000) Postactivation potentiation in endurance-trained male athletes. Med Sci Sports Exerc 32(3):403–411PubMedCrossRefGoogle Scholar
  13. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178(2):165–173. doi: 10.1046/j.1365-201X.2003.01121.x PubMedCrossRefGoogle Scholar
  14. Haraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP (2005) Region-specific mechanical properties of the human patella tendon. J Appl Physiol 98(3):1006–1012. doi: 10.1152/japplphysiol.00482.2004 PubMedCrossRefGoogle Scholar
  15. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B Biol Sci 126(843):136–195. doi: 10.1098/rspb.1938.0050 CrossRefGoogle Scholar
  16. Kay AD, Blazevich AJ (2009a) Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol 107(4):1181–1189. doi: 10.1152/japplphysiol.00281.2009 PubMedCrossRefGoogle Scholar
  17. Kay AD, Blazevich AJ (2009b) Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 106(4):1249–1256. doi: 10.1152/japplphysiol.91476.2008 PubMedCrossRefGoogle Scholar
  18. Kay AD, Blazevich AJ (2010) Concentric muscle contractions before static stretching minimize, but do not remove, stretch-induced force deficits. J Appl Physiol 108(3):637–645. doi: 10.1152/japplphysiol.01135.2009 PubMedCrossRefGoogle Scholar
  19. Kubo K, Kawakami Y, Fukunaga T (1999) Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol 87(6):2090–2096PubMedGoogle Scholar
  20. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T (2001) Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 90(2):520–527PubMedGoogle Scholar
  21. Kubo K, Kanehisa H, Fukunaga T (2002) Effects of transient muscle contractions and stretching on the tendon structures in vivo. Acta Physiol Scand 175(2):157–164. doi: 10.1046/j.1365-201X.2002.00976.x PubMedCrossRefGoogle Scholar
  22. Kubo K, Kanehisa H, Fukunaga T (2005) Effects of cold and hot water immersion on the mechanical properties of human muscle and tendon in vivo. Clin Biomech 20(3):291–300. doi: 10.1016/j.clinbiomech.2004.11.005 CrossRefGoogle Scholar
  23. Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007) Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol 99(3):235–243. doi: 10.1007/s00421-006-0338-y PubMedCrossRefGoogle Scholar
  24. Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25(3):438–444. doi: 10.1002/mus.10047 PubMedCrossRefGoogle Scholar
  25. Mademli L, Arampatzis A, Walsh M (2006) Effect of muscle fatigue on the compliance of the gastrocnemius medialis tendon and aponeurosis. J Biomech 39(3):426. doi: 10.1016/j.jbiomech.2004.12.016 PubMedCrossRefGoogle Scholar
  26. Maganaris CN (2003) Tendon conditioning: artefact or property? Proc Biol sci R Soc 270(Suppl 1):S39–S42. doi: 10.1098/rsbl.2003.0004 CrossRefGoogle Scholar
  27. Miyamoto N, Kanehisa H, Fukunaga T, Kawakami Y (2011) Effect of Postactivation Potentiation on the Maximal Voluntary Isokinetic Concentric Torque in Humans. J Strength Cond Res 25(1):186–192. doi: 10.1519/JSC.1510b1013e3181b1562c1511d PubMedCrossRefGoogle Scholar
  28. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T (2001) Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 90(5):1671–1678PubMedGoogle Scholar
  29. Obst SJ, Barrett RS, Newsham-West R (2013) Immediate effect of exercise on achilles tendon properties: systematic review. Med Sci Sports Exerc 45(8):1534–1544. doi: 10.1249/MSS.0b013e318289d821 PubMedCrossRefGoogle Scholar
  30. Onambélé GL, Narici MV, Rejc E, Maganaris CN (2007) Contribution of calf muscle–tendon properties to single-leg stance ability in the absence of visual feedback in relation to ageing. Gait Posture 26(3):343–348PubMedCrossRefGoogle Scholar
  31. Park DY, Rubenson J, Carr A, Mattson J, Besier T, Chou LB (2011) Influence of stretching and warm-up on Achilles tendon material properties. Foot Ankle Int 32(4):407–413. doi: 10.3113/fai.2011.0407 PubMedCrossRefGoogle Scholar
  32. Pearson SJ, Onambele GL (2012) Computation methods affect the reported values of in vivo human tendon stiffness. J Mech Behav Biomed Mater 5(1):291–297. doi: 10.1016/j.jmbbm.2011.08.008 PubMedCrossRefGoogle Scholar
  33. Peltonen J, Cronin NJ, Avela J, Finni T (2010) In vivo mechanical response of human Achilles tendon to a single bout of hopping exercise. J Exp Biol 213(8):1259–1265. doi: 10.1242/jeb.033514 PubMedCrossRefGoogle Scholar
  34. Proske U, Morgan DL (1987) Tendon stiffness: methods of measurement and significance for the control of movement. A review. J Biomech 20(1):75–82. doi: 10.1016/0021-9290(87)90269-7 PubMedCrossRefGoogle Scholar
  35. Proske U, Morgan DL (1999) Do cross-bridges contribute to the tension during stretch of passive muscle? J Muscle Res Cell Motil 20(5–6):433–442PubMedCrossRefGoogle Scholar
  36. Ritz-Gold CJ, Cooke R, Blumenthal DK, Stull JT (1980a) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun 93(1):209–214. doi: 10.1016/S0006-291X(80)80267-1 PubMedCrossRefGoogle Scholar
  37. Ritz-Gold CJ, Cooke R, Blumenthal DK, Stull JT (1980) Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochem Biophys Res Commun 93 (1):209-214. doi: 10.1016/S0006-291X(80)80267-1
  38. Smith JC, Fry AC (2007) Effects of a ten-second maximum voluntary contraction on regulatory myosin light-chain phosphorylation and dynamic performance measures. J Strength Cond Res 21(1):73–76PubMedCrossRefGoogle Scholar
  39. Szczesna D, Zhao J, Jones M, Zhi G, Stull J, Potter JD (2002) Phosphorylation of the regulatory light chains of myosin affects Ca2+sensitivity of skeletal muscle contraction. J Appl Physiol 92(4):1661–1670. doi: 10.1152/japplphysiol.00858.2001 PubMedGoogle Scholar
  40. Tardioli A, Malliaras P, Maffulli N (2012) Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br Med Bull. doi: 10.1093/bmb/ldr052 PubMedGoogle Scholar
  41. Tillin NA, Bishop D (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med 39 (2):147-166. doi: 10.2165/00007256-200939020-00004
  42. Vandervoort AA, Quinlan J, McComas AJ (1983) Twitch potentiation after voluntary contraction. Exp Neurol 81(1):141–152. doi: 10.1016/0014-4886(83)90163-2 PubMedCrossRefGoogle Scholar
  43. Wang XT, de Ruister MR, McN Alexander R, Ker RF (1991) The effect of temperature on the tensile stiffness of mammalian tail tendons. J Zool 223(3):491–497. doi: 10.1111/j.1469-7998.1991.tb04779.x CrossRefGoogle Scholar
  44. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci USA 102(48):17519–17524. doi: 10.1073/pnas.0506846102 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paulo Gago
    • 1
    • 2
  • Anton Arndt
    • 2
    • 3
  • Olga Tarassova
    • 2
  • Maria M. Ekblom
    • 2
    • 4
    Email author
  1. 1.Research Center for Sport, Health and Human DevelopmentUniversity of Beira Interior (UBI/CIDESD)CovilhãPortugal
  2. 2.The Swedish School of Sport and Health Sciences (GIH)StockholmSweden
  3. 3.Department of CLINTECKarolinska InstituteStockholmSweden
  4. 4.Department of NeuroscienceKarolinska InstituteStockholmSweden

Personalised recommendations