European Journal of Applied Physiology

, Volume 114, Issue 10, pp 2183–2191 | Cite as

Acute hypoxic exercise does not alter post-exercise iron metabolism in moderately trained endurance athletes

  • Andrew D. Govus
  • Chris R. Abbiss
  • Laura A. Garvican-Lewis
  • Dorine W. Swinkels
  • Coby M. Laarakkers
  • Christopher J. Gore
  • Peter Peeling
Original Article



This study measured the influence of acute hypoxic exercise on Interleukin-6 (IL-6), hepcidin, and iron biomarkers in athletes.


In a repeated measures design, 13 moderately trained endurance athletes performed 5 × 4 min intervals at 90 % of their peak oxygen consumption velocity (vVO2peak) in both normoxic [NORM, fraction of inspired oxygen (FIO2) = 0.2093, 15.3 ± 1.7 km h−1] and simulated hypoxic (HYP, FIO2 = 0.1450, 13.2 ± 1.5 km h−1) conditions. Venous blood samples were obtained pre-, post-, and 3 h post-exercise, and analysed for serum hepcidin, IL-6, ferritin, iron, soluble transferrin receptor (sTfR), and transferrin saturation.


Peak heart rate was significantly lower in HYP compared with NORM (p = 0.01); however, the rating of perceived exertion was similar between trials (p = 0.24). Ferritin (p = 0.02), transferrin (p = 0.03), and IL-6 (p = 0.01) significantly increased immediately post-exercise in both conditions, but returned to baseline 3 h later. Hepcidin levels significantly increased in both conditions 3 h post-exercise (p = 0.05), with no significant differences between trials. A significant treatment effect was observed between trials for sTfR (p = 0.01), but not iron and transferrin saturation.


Acute exercise in hypoxia did not influence post-exercise IL-6 production, hepcidin activity or iron metabolism compared with exercise at the same relative intensity in normoxia. Hence, acute exercise performed at the same relative intensity in hypoxia poses no further risk to an athlete’s iron status, as compared with exercise in normoxia.


Intermittent hypoxic training Altitude training Iron deficiency Hepcidin 



Analysis of variance


Confidence limit


Coefficient of variation




Fraction of expired oxygen


Growth differentiation factor-15


Graded exercise test


Hypoxic inducible factor


Heart rate


Hypoxic exercise trial




High-intensity interval running session


Normoxic exercise trial


Rating of perceived exertion


Standard deviation


Soluble transferrin receptor


Peak oxygen consumption


Velocity attained at peak oxygen consumption


Volume of expired gas (Atmospheric temperature and pressure saturated)


Volume of expired gas (Standard temperature and pressure dry)


Weak cation-exchange time-of-flight mass spectroscopy


  1. Ackrell BA, Maguire JJ, Dallman PR, Kearney EB (1984) Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. J Biol Chem 259:10053–10059PubMedGoogle Scholar
  2. Ahlgrim C, Pottgiesser T, Robinson N, Sottas P, Ruecker G, Schumacher Y (2010) Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int J Lab Hematol 32:506–511PubMedCrossRefGoogle Scholar
  3. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, Taube DH, Bloom SR, Tam FWK, Chapman R, Maxwell PH, Choi P (2010) Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica 95:505–508PubMedCrossRefPubMedCentralGoogle Scholar
  4. Badenhorst CE, Dawson B, Goodman C, Sim M, Cox GR, Gore CJ, Tjalsma H, Swinkels DW, Peeling P (2014) Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol 114(5):1–9CrossRefGoogle Scholar
  5. Beguin Y (2003) Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin Chim Acta 329:9–22PubMedCrossRefGoogle Scholar
  6. Blondel N, Berthoin S, Billat V, Lensel G (2001) Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med 22:27–33PubMedCrossRefGoogle Scholar
  7. Chaston TB, Matak P, Pourvali K, Srai SK, McKie AT, Sharp PA (2011) Hypoxia inhibits hepcidin expression in HuH7 hepatoma cells via decreased SMAD4 signaling. Am J Physiol Cell Physiol 300:C888–C895PubMedCrossRefPubMedCentralGoogle Scholar
  8. Clark SA, Quod MJ, Clark MA, Martin DT, Saunders PU, Gore CJ (2009) Time course of haemoglobin mass during 21 days live high: train low simulated altitude. Eur J Appl Physiol 106:399–406PubMedCrossRefGoogle Scholar
  9. Cohen J (1988) Statistical power analysis for the behavioural sciences. Lawrence Erlbaum, Mahwah (NJ)Google Scholar
  10. Epstein FH, Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454CrossRefGoogle Scholar
  11. Fallon KE, Fallon SK, Boston T (2001) The acute phase response and exercise: the ultramarathon as prototype exercise. Clin J Sport Med 11:38–43PubMedCrossRefGoogle Scholar
  12. Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, van Tienoven D, Wetzels JFM, Kiemeney LALM, Sweep FC, den Heijer M, Swinkels DW (2011) Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood 117:e218–e225PubMedCrossRefGoogle Scholar
  13. Garvican LA, Martin DT, Quod MJ, Stephens B, Sassi A, Gore CJ (2010) Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports 22:95–103PubMedCrossRefGoogle Scholar
  14. Gimenez M, Uffholtz H, Paysant P, Belleville F, Nabet P (1988) Serum iron and transferrin during an exhaustive session of interval training. Eur J Appl Physiol 57:154–158CrossRefGoogle Scholar
  15. Gore CJ, Clark SA, Saunders PU (2007) Non-hematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc 39:1600–1609PubMedCrossRefGoogle Scholar
  16. Hart JD, Withers RT (1996) The calibration of gas volume measuring devices at continuous and pulsatile flows. Aust J Sci Med Sport 28:61–65PubMedGoogle Scholar
  17. Hintze KJ, McClung JP (2011) Hepcidin: a critical regulator of iron metabolism during hypoxia. Adv HematolGoogle Scholar
  18. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12PubMedCrossRefGoogle Scholar
  19. Humberstone-Gough CE, Saunders PU, Bonetti DL, Stephens S, Bullock N, Anson JM, Gore CJ (2013) Comparison of live high: train low altitude and intermittent hypoxic exposure. J Sports Sci Med 12:394–401PubMedPubMedCentralGoogle Scholar
  20. Jones AM, Doust JH (1996) A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci 14:321–327PubMedCrossRefGoogle Scholar
  21. Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, Epstein JA, Moores SL, Erickson-Miller CL, Haase VH (2010) Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116:3039–3048PubMedCrossRefPubMedCentralGoogle Scholar
  22. Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg H (1992) Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 73:837–840PubMedGoogle Scholar
  23. Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE, Peters HP, van Dongen-Lases E, Wetzels JF, Sweep FC (2010) Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders. Clin Chem 56:1570–1579PubMedCrossRefGoogle Scholar
  24. Lainé F, Laviolle B, Ropert M, Bouguen G, Morcet J, Hamon C, Massart C, Westermann M, Deugnier Y, Loréal O (2011) Early effects of erythropoietin on serum hepcidin and serum iron bioavailability in healthy volunteers. Eur J Appl Physiol 112:1391–1397PubMedCrossRefGoogle Scholar
  25. Lundby C, Steensberg A (2004) Interleukin-6 response to exercise during acute and chronic hypoxia. Eur J Appl Physiol 91:88–93PubMedCrossRefGoogle Scholar
  26. Mackenzie RWA, Watt PW, Maxwell NS (2008) Acute normobaric hypoxia stimulates erythropoietin release. High Alt Med Biol 9:28–37PubMedCrossRefGoogle Scholar
  27. Mastrogiannaki M, Matak P, Delga S, Deschemin J-C, Vaulont S, Peyssonnaux C (2012) Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. Blood 119:587–590PubMedCrossRefGoogle Scholar
  28. McLane J, Fell R, McKay R, Winder W, Brown E, Holloszy J (1981) Physiological and biochemical effects of iron deficiency on rat skeletal muscle. Am J Physiol 241:C47–C54PubMedGoogle Scholar
  29. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093PubMedCrossRefGoogle Scholar
  30. Newlin MK, Williams S, McNamara T, Tjalsma H, Swinkels DW, Haymes EM (2012) The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab 22:79–88PubMedGoogle Scholar
  31. Nicolas G, Chauvert C, Viatte L, Danan J, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044PubMedCrossRefPubMedCentralGoogle Scholar
  32. Peeling P, Dawson B, Goodman C, Landers G, Trinder D (2008) Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol 103:381–391Google Scholar
  33. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck E, Swinkels D, Trinder D (2009a) Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol 106:51–59PubMedCrossRefGoogle Scholar
  34. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, Trinder D (2009b) Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab 19:583–597PubMedGoogle Scholar
  35. Peeling P, Dawson B, Goodman C, Landers G, Wiegerinck ET, Swinkels DW, Trinder D (2009c) Training surface and intensity: inflammation, hemolysis, and hepcidin expression. Med Sci Sports Exerc 41:1138–1145PubMedCrossRefGoogle Scholar
  36. Piperno A, Galimberti S, Mariani R, Pelucchi S, Ravasi G, Lombardi C, Bilo G, Revera M, Giuliano A, Faini A, Mainini V, Westerman M, Ganz T, Valsecchi MG, Mancia G, Parati G (2010) Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project. Blood 117:2953–2959PubMedCrossRefGoogle Scholar
  37. Robach P, Recalcati S, Girelli D, Gelfi C, Aachmann-Andersen NJ, Thomsen JJ, Norgaard AM, Alberghini A, Campostrini N, Castagna A, Vigano A, Santambrogio P, Kempf T, Wollert KC, Moutereau S, Lundby C, Cairo G (2009) Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin. Blood 113:6707–6715PubMedCrossRefGoogle Scholar
  38. Robach P, Recalcati S, Girelli D, Campostrini N, Kempf T, Wollert KC, Corbella M, Santambrogio P, Perbellini L, Brasse-Lagnel C, Christensen B, Moutereau S, Lundby C, Cairo G (2013) Serum hepcidin levels and muscle iron proteins in humans injected with low- or high-dose erythropoietin. Eur J Haematol 91:74–84PubMedCrossRefGoogle Scholar
  39. Rodríguez FA, Casas H, Casas M, Pagés T, Rama R, Ricart A, Ventura JL, Ibanez J, Viscor G (1999) Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc 31:264–268PubMedCrossRefGoogle Scholar
  40. Saunders PU (2009) Endurance training at altitude. High Alt Med Biol 10:135–148PubMedCrossRefGoogle Scholar
  41. Schumacher YO (2002) Effects of exercise on soluble transferrin receptor and other variables of the iron status. Br J Sports Med 36:195–200PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sim M, Dawson B, Landers G, Wiegerinck ET, Swinkels DW, Townsend MA, Trinder D, Peeling P (2012) The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol 112:1889–1898PubMedCrossRefGoogle Scholar
  43. Sim M, Dawson B, Landers G, Swinkels DW, Tjalsma H, Trinder D, Peeling P (2013) Effect of exercise modality and intensity on post-exercise interleukin-6 and hepcidin Levels. Int J Sport Nutr Exerc Metab 23:178–186PubMedGoogle Scholar
  44. Stray-Gundersen J, Alexander C, Hochstein A, deLemos D, Levine BD (1992) Failure of red cell volume to increase to altitude exposure in iron deficient runners. Med Sci Sports Exerc 24:S90CrossRefGoogle Scholar
  45. Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N, Kemna EHJM, Tjalsma H (2008) Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS One 3:e2706PubMedCrossRefPubMedCentralGoogle Scholar
  46. Talbot NP, Lakhal S, Smith TG, Privat C, Nickol AH, Rivera-Ch M, Leon-Velarde F, Dorrington KL, Mole DR, Robbins PA (2012) Regulation of hepcidin expression at high altitude. Blood 119:857–860PubMedCrossRefGoogle Scholar
  47. Tanno T, Bhanu NV, Oneal PA, Goh S-H, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang R-H (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101PubMedCrossRefGoogle Scholar
  48. Tanno T, Porayette P, Sripichai O, Noh S-J, Byrnes C, Bhupatiraju A, Lee YT, Goodnough JB, Harandi O, Ganz T (2009) Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114:181–186PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrew D. Govus
    • 1
  • Chris R. Abbiss
    • 1
  • Laura A. Garvican-Lewis
    • 5
    • 3
  • Dorine W. Swinkels
    • 6
    • 7
  • Coby M. Laarakkers
    • 6
    • 7
  • Christopher J. Gore
    • 3
    • 4
    • 5
  • Peter Peeling
    • 2
  1. 1.Centre for Exercise and Sport Science Research, School of Exercise and Health ScienceEdith Cowan UniversityJoondalupAustralia
  2. 2.School of Sport Science, Exercise and HealthUniversity of Western AustraliaCrawleyAustralia
  3. 3.Department of PhysiologyAustralian Institute of SportBruceAustralia
  4. 4.Exercise Physiology LaboratoryFlinders UniversityBedford ParkAustralia
  5. 5.Research Institute for Sport and ExerciseUniversity of CanberraBelconnenAustralia
  6. 6.Department of Laboratory Medicine (LGEM 830)Radboud University Medical CentreNijmegenThe Netherlands
  7. 7.Hepcidinanalysis.comNijmegenThe Netherlands

Personalised recommendations