European Journal of Applied Physiology

, Volume 114, Issue 9, pp 1995–2006 | Cite as

P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig

  • David KylhammarEmail author
  • Laurids T. Bune
  • Göran Rådegran
Original Article



To investigate the role of P2Y1 and P2Y12 receptors in hypoxia- and adenosine diphosphate (ADP)-induced pulmonary vasoconstriction.


19 anaesthetized, mechanically ventilated pigs (31.3 ± 0.7 kg) were evaluated in normoxia and hypoxia, without (n = 6) or with P2Y1 receptor antagonist MRS2500 (n = 7) or P2Y12 receptor antagonist cangrelor (n = 6) treatment. 12 pigs (29.3 ± 0.4 kg) were evaluated before and during ADP infusion, without and with MRS2500 (n = 6) or cangrelor (n = 6) pre-treatment.


Hypoxia increased (p < 0.05) mean pulmonary artery pressure (MPAP) by 14.2 ± 1.1 mmHg and pulmonary vascular resistance (PVR) by 2.7 ± 0.4 WU. Without treatment MPAP and PVR remained unaltered (p = ns) for 90 min hypoxia. During hypoxia MRS2500 decreased (p < 0.013) MPAP by 4.3 ± 1.2 mmHg within 15 min. Cangrelor decreased (p < 0.036) MPAP to be 3.3 ± 0.4 and 3.6 ± 0.6 mmHg lower than hypoxia baseline after 10 and 30 min. PVR was, however, unaltered (p = ns) by MRS2500 or cangrelor during hypoxia. ADP increased (p < 0.001) MPAP and PVR to stabilize 11.1 ± 1.3 mmHg and 2.7 ± 0.3 WU higher than baseline. MRS2500 or cangrelor pre-treatment totally abolished the sustained MPAP- and PVR-increases to ADP.


ADP elicits pulmonary vasoconstriction through P2Y1 and P2Y12 receptor activation. ADP is not a mandatory modulator, but may still contribute to pulmonary vascular tone during acute hypoxia. Further investigations into the mechanisms behind ADP-induced pulmonary vasoconstriction and the role of ADP as a modulator of pulmonary vascular tone during hypoxia are warranted.


ADP Cangrelor HPV MRS2500 Pulmonary hypertension 



Analysis of variance




Adenosine triphosphate


Adenosine diphosphate


Cardiac output


Oxygen content


Inspired oxygen fraction


Haemoglobin concentration


Hypoxic pulmonary vasoconstriction


Heart rate


Mean aortic pressure


Mean pulmonary arterial pressure


Mean right atrial pressure


Pulmonary artery


Pulmonary capillary wedge pressure


Partial pressure for oxygen


Pulmonary vascular resistance


Oxygen saturation


Stroke volume


Systemic vascular resistance


Wood units



We would like to acknowledge the support of the animal technicians at the Department of Experimental Surgery and Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark, the staff at the Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark, and the staff at the Department of Cardiology, Lund University and the Clinic for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden. We moreover acknowledge the financial support of the Copenhagen Muscle Research Centre, Copenhagen, Denmark, the Maggie Stephens-, Crafoord-, Per Westling- and “ALF” Foundations, Lund, Sweden, and the Dr. Hartelii Scholarship Fund, Lund, Sweden. Cangrelor was provided by The Medicines Company, Parsippany, NJ, USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

421_2014_2921_MOESM1_ESM.pdf (434 kb)
Supplementary material 1 (PDF 433 kb)


  1. Aaronson PI, Robertson TP, Ward JP (2002) Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 132(1):107–120PubMedCrossRefGoogle Scholar
  2. Alexander F, Manny J, Lelcuk S, Shepro D, Hechtman HB (1986) Cyclo-oxygenase products mediate hypoxic pulmonary hypertension. J Pediatr Surg 21(12):1101–1107PubMedCrossRefGoogle Scholar
  3. Bärtsch P, Gibbs JS (2007) Effect of altitude on the heart and the lungs. Circulation 116(19):2191–2202PubMedCrossRefGoogle Scholar
  4. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483PubMedCrossRefGoogle Scholar
  5. Buvinic S, Briones R, Huidobro-Toro JP (2002) P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br J Pharmacol 136(6):847–856PubMedCentralPubMedGoogle Scholar
  6. Buvinic S, Poblete MI, Donoso MV, Delpiano AM, Briones R, Miranda R, Huidobro-Toro JP (2006) P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. J Physiol 573(2):427–443PubMedCentralPubMedCrossRefGoogle Scholar
  7. Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68(10):1995–2002PubMedCentralPubMedCrossRefGoogle Scholar
  8. Deem S, Swenson ER, Alberts MK, Hedges RG, Bishop MJ (1998) Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am J Respir Crit Care Med 157(4 Pt 1):1181–1186PubMedGoogle Scholar
  9. Ellsworth ML (2000) The red blood cell as an oxygen sensor: what is the evidence? Acta Physiol Scand 168(4):551–559PubMedCrossRefGoogle Scholar
  10. Geiger R, Treml B, Kleinsasser A, Neu N, Fischer V, Stein JI, Loeckinger A (2008) Intravenous tezosentan and vardenafil attenuate acute hypoxic pulmonary hypertension. High Alt Med Biol 9(3):223–227PubMedCrossRefGoogle Scholar
  11. Glasser SA, Domino KB, Lindgren L, Parcella P, Marshall C, Marshall BE (1983) Pulmonary blood pressure and flow during atelectasis in the dog. Anesthesiology 58(3):225–231PubMedCrossRefGoogle Scholar
  12. Guns P, Korda A, Crauwels HM, van Assche T, Robaye B, Boeynaems J, Bult H (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146(2):288–295PubMedCentralPubMedGoogle Scholar
  13. Hechler B, Nonne C, Roh EJ, Cattaneo M, Cazenave J-P, Lanza F, Jacobson KA, Gachet C (2006) MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 316(2):556–563PubMedCentralPubMedCrossRefGoogle Scholar
  14. Hedelin P, Kylhammar D, Rådegran G (2012) Dual endothelin receptor blockade with tezosentan markedly attenuates hypoxia-induced pulmonary vasoconstriction in a porcine model. Acta Physiol 204(3):419–434CrossRefGoogle Scholar
  15. Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2006) [32P]2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. Br J Pharmacol 147(5):459–467PubMedCentralPubMedGoogle Scholar
  16. Huez S, Faoro V, Vachiéry J-L, Unger P, Martinot J-B, Naeije R (2007) Images in cardiovascular medicine. High-altitude-induced right-heart failure. Circulation 115(9):e308–e309PubMedCrossRefGoogle Scholar
  17. Hyman AL, Woolverton WC, Pennington DG, Jaques WE (1971) Pulmonary vascular responses to adenosine diphosphate. J Pharmacol Exp Ther 178(3):549–561PubMedGoogle Scholar
  18. Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP (2006) Nucleotide receptor signaling in platelets. J Thromb Haemost 4(11):2317–2326PubMedCrossRefGoogle Scholar
  19. Kim HS, Ohno M, Xu B, Kim HO, Choi Y, Ji XD, Maddileti S, Marquez VE, Harden TK, Jacobson KA (2003) 2-substitution of adenine nucleotide analogues containing a bicycle[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46(23):4974–4987PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kunapuli SP (1998) Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends Pharmacol Sci 19(10):391–394PubMedCrossRefGoogle Scholar
  21. Kylhammar D, Rådegran G (2012) Cyclooxygenase-2 inhibition and thromboxane A2 receptor antagonism attenuate hypoxic pulmonary vasoconstriction in a porcine model. Acta Physiol 205(4):507–519CrossRefGoogle Scholar
  22. Lundgren J, Kylhammar D, Hedelin P, Rådegran G (2012) sGC stimulation totally reverses hypoxia-induced pulmonary vasoconstriction alone and combined with dual endothelin-receptor blockade in a porcine model. Acta Physiol 206(3):178–194CrossRefGoogle Scholar
  23. Mahesree ML, Chakravarti RN, Wahi PL (1975) Packed cells, platelet-rich plasma, and adenosine diphosphate in the production of occlusive vascular changes in lungs of rabbits. Am Heart J 89(6):753–758PubMedCrossRefGoogle Scholar
  24. Malmsjö M, Adner M, Harden TK, Pendergast W, Edvinsson L, Erlinge D (2000) The stable pyrimidines UDPβS and UTPγS discriminate between the P2 receptors that mediate vascular contraction and relaxation of the rat mesenteric artery. Br J Pharmacol 131(1):51–56PubMedCentralPubMedGoogle Scholar
  25. Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems J-M, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64(1):104–112PubMedCrossRefGoogle Scholar
  26. McMurtry IF, Hookway BW, Roos S (1977) Red blood cells play a crucial role in maintaining vascular reactivity to hypoxia in isolated rat lungs. Chest 71(2 suppl):253–256PubMedCrossRefGoogle Scholar
  27. Mitchell C, Syed NI, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343(3):755–762PubMedCrossRefGoogle Scholar
  28. Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98(1):390–403PubMedCrossRefGoogle Scholar
  29. Olivecrona GK, Götberg M, Harnek J, Wang L, Jacobson KA, Erlinge D (2004) Coronary artery reperfusion: the ADP receptor P2Y1 mediates early reactive hyperemia in vivo in pigs. Purinergic Signal 1(1):59–65PubMedCentralPubMedCrossRefGoogle Scholar
  30. Pàvek K, Boska D, Selecky FV (1964) Measurement of cardiac output by thermodilution with constant rate injection of indicator. Circ Res 15:311–319PubMedCrossRefGoogle Scholar
  31. Silove ED (1971) Effects of haemolysed blood and adenosine diphosphate on the pulmonary vascular resistance in calves. Cardiovasc Res 5(3):313–318PubMedCrossRefGoogle Scholar
  32. van Giezen JJJ, Humphries RG (2005) Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 31(2):195–204PubMedCrossRefGoogle Scholar
  33. von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Phys Scand 12:301–320CrossRefGoogle Scholar
  34. Wang L, Olivecrona G, Götberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96(2):189–196PubMedCrossRefGoogle Scholar
  35. Weitzenblum E, Apprill M, Oswald M, Chaouat A, Imbs J (1994) Pulmonary hemodynamics in patients with chronic obstructive pulmonary disease before and during an episode of peripheral edema. Chest 105(5):1377–1382PubMedCrossRefGoogle Scholar
  36. Wihlborg A-K, Malmsjö M, Eyjolfsson A, Gustafsson R, Jacobson K, Erlinge D (2003) Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor. Br J Pharmacol 138(8):1451–1458PubMedCentralPubMedGoogle Scholar
  37. Wihlborg A-K, Wang L, Braun OÖ, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24(10):1810–1815PubMedCrossRefGoogle Scholar
  38. Wiklund A, Kylhammar D, Rådegran G (2012) Levosimendan attenuates hypoxia-induced pulmonary hypertension in a porcine model. J Cardiovasc Pharmacol 59(5):441–449PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Kylhammar
    • 1
    • 2
    • 3
    Email author
  • Laurids T. Bune
    • 3
  • Göran Rådegran
    • 1
    • 2
    • 3
  1. 1.The Öresund Cardiovascular Research Collaboration, The Section for Heart Failure and Valvular Disease, The Clinic for Heart- and Lung DiseaseSkåne University HospitalLundSweden
  2. 2.The Department of Cardiology, Clinical Sciences, Faculty of MedicineLund UniversityLundSweden
  3. 3.The Copenhagen Muscle Research Centre, Rigshospitalet and the Panum InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations