Advertisement

European Journal of Applied Physiology

, Volume 114, Issue 6, pp 1309–1320 | Cite as

Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males

  • Daniel J. Owens
  • Daniel Webber
  • Samuel G. Impey
  • Jonathan Tang
  • Timothy F. Donovan
  • William D. Fraser
  • James P. Morton
  • Graeme L. Close
Original Article

Abstract

Purpose

Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function.

Methods

Participants (n = 29) received an oral dose of 10,000 IU day−1 vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12.

Results

Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L−1 for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L−1) that remained elevated throughout the trial (P < 0.005). Contrastingly, PLB showed a significant decrease in 25[OH]D at week 12 (25 ± 15 nmol L−1) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05).

Conclusions

Elevating total serum 25[OH]D to concentrations > 120 nmol L−1 has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (<12.5 nmol L−1).

Keywords

Cholecalciferol 25-Hydroxyvitamin D Supplementation Isokinetic dynamometry Electromyostimulation Fatigue 

Abbreviations

25[OH]D

25-Hydroxyvitamin D

1,25[OH]D

1,25-Dihydroxyvitamin

Ca2+

Calcium, Ionized

ECLIA

Enzyme-linked chemiluminescent immunosorbent assay

EMS

Electromyostimulation

FDA

Food and Drug Agency

iPTH

Intact parathyroid hormone

IU

International units

IKD

Isokinetic dynamometry

LC–MS/MS

Liquid chromatography tandem mass spectrometry

LLOQ

Lower limit of quantification

N

Newtons

Nm

Newton metres

nmol L−1

Nanomoles per litre

PAR-Q

Physical activity readiness Questionnaire

Pmol L−1

Picomoles per litre

rad s−1

Radians per second

RDI

Recommended daily intake

US IoM

United States Institute of Medicine

UVB

Ultraviolet B

Notes

Acknowledgments

The authors would like to thank Dr. Rob Erskine and Ian Poole at LJMU for their expert technical assistance in electromyostimulation. Gratitude is also expressed by the authors to Emily Fisher, Christopher Washbourne and Isabelle Piec at UEA for the development of the LC–MS/MS assay.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Al-Said YA, Al-Rached HS, Al-Qahtani HA, Jan MM (2009) Severe proximal myopathy with remarkable recovery after vitamin D treatment. Can J Neurol Sci Le journal canadien des sciences neurologiques 36(3):336–339Google Scholar
  2. Anderson PH, Turner AG, Morris HA (2012) Vitamin D actions to regulate calcium and skeletal homeostasis. Clin Biochem 45(12):880–886. doi: 10.1016/j.clinbiochem.2012.02.020 PubMedCrossRefGoogle Scholar
  3. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26(4):217–238PubMedCrossRefGoogle Scholar
  4. Baltzopoulos V, Brodie DA (1989) Isokinetic dynamometry. Applications and limitations. Sports Med 8(2):101–116PubMedCrossRefGoogle Scholar
  5. Bigland-Ritchie B, Jones DA, Woods JJ (1979) Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol 64(2):414–427PubMedCrossRefGoogle Scholar
  6. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr 80(3):752–758PubMedGoogle Scholar
  7. Capiati DA, Vazquez G, Tellez Inon MT, Boland RL (2000) Role of protein kinase C in 1,25(OH)(2)-vitamin D(3) modulation of intracellular calcium during development of skeletal muscle cells in culture. J Cell Biochem 77(2):200–212PubMedCrossRefGoogle Scholar
  8. Close GL, Leckey J, Patterson M, Bradley W, Owens DJ, Fraser WD, Morton JP (2013a) The effects of vitamin D3 supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sports Med 47(11):692–696. doi: 10.1136/bjsports-2012-091735 PubMedCrossRefGoogle Scholar
  9. Close GL, Russell J, Cobley JN, Owens DJ, Wilson G, Gregson W, Fraser WD, Morton JP (2013b) Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci 31(4):344–353. doi: 10.1080/02640414.2012.733822 PubMedCrossRefGoogle Scholar
  10. de Boland AR, Massheimer V, Fernandez LM (1988) 1,25 Dihydroxyvitamin D3 affects calmodulin distribution among subcellular fractions of skeletal muscle. Calcif Tissue Int 43(6):370–375PubMedCrossRefGoogle Scholar
  11. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91(1):22–29. doi: 10.1007/s00421-003-0933-0 PubMedCrossRefGoogle Scholar
  12. Food and Drug Administration, U.S. Department of Health and Human Services. (2001) Guidance for Industry: Bioanalytical Method Validation. Retrieved on December 17th 2013 from http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf
  13. Forbes SC, Little JP, Candow DG (2012) Exercise and nutritional interventions for improving aging muscle health. Endocrine 42(1):29–38. doi: 10.1007/s12020-012-9676-1 PubMedCrossRefGoogle Scholar
  14. Garcia LA, Ferrini MG, Norris KC, Artaza JN (2013) 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells. J Steroid Biochem Mol Biol 133:1–11. doi: 10.1016/j.jsbmb.2012.09.004 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Garland CF, French CB, Baggerly LL, Heaney RP (2011) Vitamin D supplement doses and serum 25-hydroxyvitamin D in the range associated with cancer prevention. Anticancer Res 31(2):607–611PubMedGoogle Scholar
  16. Gerdhem P, Ringsberg KA, Obrant KJ, Akesson K (2005) Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int 16(11):1425–1431. doi: 10.1007/s00198-005-1860-1 PubMedCrossRefGoogle Scholar
  17. Gerrits HL, Hopman MT, Sargeant AJ, Jones DA, De Haan A (2002) Effects of training on contractile properties of paralyzed quadriceps muscle. Muscle Nerve 25(4):559–567PubMedCrossRefGoogle Scholar
  18. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2012) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. doi: 10.1210/er.2012-1012 PubMedGoogle Scholar
  19. Heaney RP (2011) Assessing vitamin D status. Curr Opin Clin Nutr Metab Care 14(5):440–444. doi: 10.1097/MCO.0b013e328348ed85 PubMedCrossRefGoogle Scholar
  20. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ (2003) Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 77(1):204–210PubMedGoogle Scholar
  21. Hermsen D, Franzson L, Hoffmann JP, Isaksson A, Kaufman JM, Leary E, Muller C, Nakatsuka K, Nishizawa Y, Reinauer H, Riesen W, Roth HJ, Steinmuller T, Troch T, Bergmann P (2002) Multicenter evaluation of a new immunoassay for intact PTH measurement on the Elecsys System 2010 and 1010. Clin Lab 48(3–4):131–141PubMedGoogle Scholar
  22. Hossein-nezhad A, Spira A, Holick MF (2013) Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS ONE 8(3):e58725. doi: 10.1371/journal.pone.0058725 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Houston DK, Cesari M, Ferrucci L, Cherubini A, Maggio D, Bartali B, Johnson MA, Schwartz GG, Kritchevsky SB (2007) Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol Ser A Biol Sci Med Sci 62(4):440–446CrossRefGoogle Scholar
  24. IoM (2011) Dietary reference intakes for calcium and vitamin D. National Academic Press, Washington, DCGoogle Scholar
  25. Irani PF (1976) Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry 39(7):686–693PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kenny AM, Biskup B, Robbins B, Marcella G, Burleson JA (2003) Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. J Am Geriatr Soc 51(12):1762–1767PubMedCrossRefGoogle Scholar
  27. Kukuljan S, Nowson CA, Sanders KM, Nicholson GC, Seibel MJ, Salmon J, Daly RM (2011) Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J Clin Endocrinol Metab 96(4):955–963. doi: 10.1210/jc.2010-2284 PubMedCrossRefGoogle Scholar
  28. Kumar R, Thompson JR (2011) The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol JASN 22(2):216–224. doi: 10.1681/ASN.2010020186 CrossRefGoogle Scholar
  29. Lappe JM, Heaney RP (2012) Why randomized controlled trials of calcium and vitamin D sometimes fail. Dermatoendocrinol 4(2):95–100. doi: 10.4161/derm.19833 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lesmes GR, Costill DL, Coyle EF, Fink WJ (1978) Muscle strength and power changes during maximal isokinetic training. Med Sci Sports 10(4):266–269PubMedGoogle Scholar
  31. Marantes I, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd, Amin S (2011) Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res 26(12):2860–2871. doi: 10.1002/jbmr.510 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Morelli S, de Boland AR, Boland RL (1993) Generation of inositol phosphates, diacylglycerol and calcium fluxes in myoblasts treated with 1,25-dihydroxyvitamin D3. Biochem J 289(Pt 3):675–679PubMedCentralPubMedGoogle Scholar
  33. Morton JP, Atkinson G, MacLaren DP, Cable NT, Gilbert G, Broome C, McArdle A, Drust B (2005) Reliability of maximal muscle force and voluntary activation as markers of exercise-induced muscle damage. Eur J Appl Physiol 94(5–6):541–548. doi: 10.1007/s00421-005-1373-9 PubMedCrossRefGoogle Scholar
  34. Morton JP, Iqbal Z, Drust B, Burgess D, Close GL, Brukner PD (2012) Seasonal variation in vitamin D status in professional soccer players of the English Premier League. Appl Physiol Nutr Metab. doi: 10.1139/h2012-037 Google Scholar
  35. Rodman JS, Baker T (1978) Changes in the kinetics of muscle contraction in vitamin D-depleted rats. Kidney Int 13(3):189–193PubMedCrossRefGoogle Scholar
  36. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS (2012) The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 33(3):456–492. doi: 10.1210/er.2012-1000 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sai AJ, Walters RW, Fang X, Gallagher JC (2011) Relationship between vitamin D, parathyroid hormone, and bone health. J Clin Endocrinol Metab 96(3):E436–E446. doi: 10.1210/jc.2010-1886 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303(18):1815–1822. doi: 10.1001/jama.2010.594 PubMedCrossRefGoogle Scholar
  39. Sinha A, Hollingsworth KG, Ball S, Cheetham T (2013) Improving the vitamin d status of vitamin d deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab 98(3):E509–E513. doi: 10.1210/jc.2012-3592 PubMedCrossRefGoogle Scholar
  40. Smith R, Stern G (1967) Myopathy, osteomalacia and hyperparathyroidism. Brain 90(3):593–602PubMedCrossRefGoogle Scholar
  41. Snellman G, Melhus H, Gedeborg R, Byberg L, Berglund L, Wernroth L, Michaelsson K (2010) Determining vitamin D status: a comparison between commercially available assays. PLoS ONE 5(7):e11555. doi: 10.1371/journal.pone.0011555 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Soderlund K, Hultman E (1991) ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation. Am J Physiol 261(6 Pt 1):E737–E741PubMedGoogle Scholar
  43. Srikuea R, Zhang X, Park-Sarge OK, Esser KA (2012) VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol 303(4):C396–C405. doi: 10.1152/ajpcell.00014.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL (2011) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22(3):859–871. doi: 10.1007/s00198-010-1407-y PubMedGoogle Scholar
  45. Stratos I, Li Z, Herlyn P, Rotter R, Behrendt AK, Mittlmeier T, Vollmar B (2013) Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. Am J Pathol 182(3):895–904. doi: 10.1016/j.ajpath.2012.11.006 PubMedCrossRefGoogle Scholar
  46. van Schoor NM, Lips P (2011) Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab 25(4):671–680. doi: 10.1016/j.beem.2011.06.007 PubMedCrossRefGoogle Scholar
  47. Vazquez G, Boland R, de Boland AR (1995) Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim Biophys Acta 1269(1):91–97PubMedCrossRefGoogle Scholar
  48. Vieth R (2007) Vitamin D toxicity, policy, and science. J Bone Miner Res 22(Suppl 2):V64–V68. doi: 10.1359/jbmr.07s221 PubMedCrossRefGoogle Scholar
  49. Vieth R (2011) Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L (30 ng/ml). Best Pract Res Clin Endocrinol Metab 25(4):681–691. doi: 10.1016/j.beem.2011.06.009 PubMedCrossRefGoogle Scholar
  50. Ziambaras K, Dagogo-Jack S (1997) Reversible muscle weakness in patients with vitamin D deficiency. West J Med 167(6):435–439PubMedCentralPubMedGoogle Scholar
  51. Zittermann A (2003) Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 89(5):552–572. doi: 10.1079/BJN2003837 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel J. Owens
    • 1
  • Daniel Webber
    • 1
  • Samuel G. Impey
    • 1
  • Jonathan Tang
    • 2
  • Timothy F. Donovan
    • 3
  • William D. Fraser
    • 2
  • James P. Morton
    • 1
  • Graeme L. Close
    • 1
  1. 1.Research Institute for Sport and Exercise ScienceLiverpool John Moores UniversityLiverpoolUK
  2. 2.Faculty of Medicine and Health Sciences, Norwich Medical SchoolUniversity of East AngliaNorwichUK
  3. 3.Sport and Exercise SciencesGlyndwr UniversityWrexhamUK

Personalised recommendations