Advertisement

European Journal of Applied Physiology

, Volume 114, Issue 7, pp 1439–1449 | Cite as

“Live High–Train High” increases hemoglobin mass in Olympic swimmers

  • Thomas Christian Bonne
  • Carsten Lundby
  • Susanne Jørgensen
  • Lars Johansen
  • Monija Mrgan
  • Signe Refsgaard Bech
  • Mikael Sander
  • Marcelo Papoti
  • Nikolai Baastrup NordsborgEmail author
Original Article

Abstract

Purpose

This study tested whether 3–4 weeks of classical “Live High–Train High” (LHTH) altitude training increases swim-specific VO2max through increased hemoglobin mass (Hbmass).

Methods

Ten swimmers lived and trained for more than 3 weeks between 2,130 and 3,094 m of altitude, and a control group of ten swimmers followed the same training at sea-level (SL). Body composition was examined using dual X-ray absorptiometry. Hbmass was determined by carbon monoxide rebreathing. Swimming VO2peak was determined and swimming trials of 4 × 50, 200 and 3,000 m were performed before and after the intervention.

Results

Hbmass (n = 10) was increased (P < 0.05)after altitude training by 6.2 ± 3.9 % in the LHTH group, whereas no changes were apparent in the SL group (n = 10). Swimming VO2peak was similar before and after training camps in both groups (LHTH: n = 7, SL: n = 6). Performance of 4 × 50 m at race pace was improved to a similar degree in both groups (LHTH: n = 10, SL: n = 10). Maximal speed reached in an incremental swimming step test (P = 0.051), and time to complete 3,000 m tended (P = 0.09) to be more improved after LHTH (n = 10) than SL training (n = 10).

Conclusion

In conclusion, 3–4 weeks of classical LHTH is sufficient to increase Hbmass but exerts no effect on swimming-specific VO2peak. LHTH may improve performance more than SL training.

Keywords

Live High–Train High Hypoxia Performance 

Abbreviations

BV

Blood volume

CO

Carbon monoxide

Hb

Hemoglobin

Hbmass

Hemoglobin mass

Hct

Hematocrit

LHTH

Live High–Train High

LHTL

Live High–Train Low

PV

Plasma volume

RCV

Red cell volume

SL

Sea level

TE

Typical error

VO2max

Maximal oxygen consumption

VO2peak

Peak oxygen consumption

Notes

Acknowledgments

The study was supported by funds from Team Denmark given to N.B.N. and C.L. The authors would like to thank all the swimmers, coaches and the Danish National Swimming Federation who participated in the study.

Conflict of interest

The authors declare no conflict of interests.

References

  1. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84PubMedCrossRefGoogle Scholar
  2. Bonetti DL, Hopkins WG (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 39(2):107–127PubMedCrossRefGoogle Scholar
  3. Butterfield GE (1999) Nutrient requirements at high altitude. Clin Sports Med 18(3):607–621PubMedCrossRefGoogle Scholar
  4. Carre F, Dassonville J, Beillot J, Prigent JY, Rochcongar P (1994) Use of oxygen uptake recovery curve to predict peak oxygen uptake in upper body exercise. Eur J Appl Physiol Occup Physiol 69(3):258–261PubMedCrossRefGoogle Scholar
  5. Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol 85(4):1448–1456PubMedGoogle Scholar
  6. Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, Stray-Gundersen J (2013a) Defining the ”dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol (Bethesda, Md). doi: 10.1152/japplphysiol.00634.2013 Google Scholar
  7. Chapman RF, Laymon Stickford AS, Lundby C, Levine BD (2013b) Timing of return from altitude training for optimal sea level performance. J Appl Physiol (Bethesda, Md). doi: 10.1152/japplphysiol.00663.2013 Google Scholar
  8. Chia M, Liao CA, Huang CY, Lee WC, Hou CW, Yu SH, Harris MB, Hsu TS, Lee SD (2013) Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles. Chin J Physiol 56(1). doi: 10.4077/CJP.2013.BAA071
  9. Clark SA, Quod MJ, Clark MA, Martin DT, Saunders PU, Gore CJ (2009) Time course of haemoglobin mass during 21 days live high: train low simulated altitude. Eur J Appl Physiol 106(3):399–406. doi: 10.1007/s00421-009-1027-4 PubMedCrossRefGoogle Scholar
  10. Cnaan A, Laird NM, Slasor P (1997) Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16(20):2349–2380. doi: 10.1002/(SICI)1097 PubMedCrossRefGoogle Scholar
  11. Costill DL, Kovaleski J, Porter D, Kirwan J, Fielding R, King D (1985) Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int J Sports Med 6(5):266–270. doi: 10.1055/s-2008-1025849 PubMedCrossRefGoogle Scholar
  12. Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bartsch P (2005) Individual variation in the erythropoietic response to altitude training in elite junior swimmers. Br J Sports Med 39(3):148–153. doi: 10.1136/bjsm.2003.011387 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gough CE, Saunders PU, Fowlie J, Savage B, Pyne DB, Anson JM, Wachsmuth N, Prommer N, Gore CJ (2012) Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers. Eur J Appl Physiol 112(9):3275–3285. doi: 10.1007/s00421-011-2291-7 PubMedCrossRefGoogle Scholar
  14. Hahn AG, Gore CJ (2001) The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 31(7):533–557PubMedCrossRefGoogle Scholar
  15. Hansen J, Sander M, Hald CF, Victor RG, Thomas GD (2000) Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J Physiol 527(Pt 2):387–396PubMedCentralPubMedCrossRefGoogle Scholar
  16. Holmer I (1972) Oxygen uptake during swimming in man. J Appl Physiol 33(4):502–509PubMedGoogle Scholar
  17. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15PubMedCrossRefGoogle Scholar
  18. Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301PubMedCrossRefGoogle Scholar
  19. Jelkmann W, Lundby C (2011) Blood doping and its detection. Blood 118(9):2395–2404. doi: 10.1182/blood-2011-02-303271 PubMedCrossRefGoogle Scholar
  20. Klausen K, Robinson S, Micahel ED, Myhre LG (1966) Effect of high altitude on maximal working capacity. J Appl Physiol 21(4):1191–1194PubMedGoogle Scholar
  21. Leger LA, Seliger V, Brassard L (1980) Backward extrapolation of VO2max values from the O2 recovery curve. Med Sci Sports Exerc 12(1):24–27PubMedGoogle Scholar
  22. Levine BD, Stray-Gundersen J (1997) ”Living high–training low”effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83(1):102–112PubMedGoogle Scholar
  23. Levine BD, Stray-Gundersen J (2005) Point: positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol 99(5):2053–2055. doi: 10.1152/japplphysiol.00877.2005 PubMedCrossRefGoogle Scholar
  24. Lundby C, Millet GP, Calbet JA, Bartsch P, Subudhi AW (2012) Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med 46(11):792–795. doi: 10.1136/bjsports-2012-091231 PubMedCrossRefGoogle Scholar
  25. Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT (1994) Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism 43(10):1226–1232PubMedCrossRefGoogle Scholar
  26. McClelland GB, Hochachka PW, Reidy SP, Weber JM (2001) High-altitude acclimation increases the triacylglycerol/fatty acid cycle at rest and during exercise. Am J Physiol Endocrinol Metab 281(3):E537–E544PubMedGoogle Scholar
  27. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40(1):1–25. doi: 10.2165/11317920-000000000-00000 PubMedCrossRefGoogle Scholar
  28. Montpetit RR, Leger LA, Lavoie JM, Cazorla G (1981) VO2 peak during free swimming using the backward extrapolation of the O2 recovery curve. Eur J Appl Physiol Occup Physiol 47(4):385–391PubMedCrossRefGoogle Scholar
  29. Rasmussen P, Siebenmann C, Diaz V, Lundby C (2013) Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Med Sci Sports Exerc. doi: 10.1249/MSS.0b013e31829047e5 Google Scholar
  30. Robach P, Lundby C (2012) Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 22(3):303–305. doi: 10.1111/j.1600-0838.2012.01457.x PubMedCrossRefGoogle Scholar
  31. Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006) Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol 96(4):423–433. doi: 10.1007/s00421-005-0089-1 PubMedCrossRefGoogle Scholar
  32. Robertson EY, Aughey RJ, Anson JM, Hopkins WG, Pyne DB (2010) Effects of simulated and real altitude exposure in elite swimmers. J Strength Cond Res 24(2):487–493. doi: 10.1519/JSC.0b013e3181c06d56 PubMedCrossRefGoogle Scholar
  33. Rodriguez FA (2000) Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming, running and cycling tests in competitive swimmers. JSports Med Phys Fit 40(2):87–95Google Scholar
  34. Roels B, Hellard P, Schmitt L, Robach P, Richalet JP, Millet GP (2006) Is it more effective for highly trained swimmers to live and train at 1200 m than at 1850 m in terms of performance and haematological benefits? Br J Sports Med 40(2):e4. doi: 10.1136/bjsm.2004.017103 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Saunders PU, Pyne DB, Gore CJ (2009) Endurance training at altitude. High Alt Med Biol 10(2):135–148. doi: 10.1089/ham.2008.1092 PubMedCrossRefGoogle Scholar
  36. Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32(2):332–348PubMedCrossRefGoogle Scholar
  37. Schmidt W, Prommer N (2005) The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95(5–6):486–495. doi: 10.1007/s00421-005-0050-3 PubMedCrossRefGoogle Scholar
  38. Schmidt W, Prommer N (2010) Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev 38(2):68–75. doi: 10.1097/JES.0b013e3181d4957a PubMedCrossRefGoogle Scholar
  39. Schumacher YO, Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Roecker K (2008) Haemoglobin mass in cyclists during stage racing. Int J Sports Med 29(5):372–378. doi: 10.1055/s-2007-965335 PubMedCrossRefGoogle Scholar
  40. Stray-Gundersen J, Chapman RF, Levine BD (2001) ”Living high–training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91(3):1113–1120PubMedGoogle Scholar
  41. Stromme SB, Ingjer F, Meen HD (1977) Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 42(6):833–837PubMedGoogle Scholar
  42. Thomsen JJ, Rentsch RL, Robach P, Calbet JA, Boushel R, Rasmussen P, Juel C, Lundby C (2007) Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity. Eur J Appl Physiol 101(4):481–486. doi: 10.1007/s00421-007-0522-8 PubMedCrossRefGoogle Scholar
  43. Truijens MJ, Rodriguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD (2008) The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol 104(2):328–337. doi: 10.1152/japplphysiol.01324.2006 PubMedCrossRefGoogle Scholar
  44. Wachsmuth NB, Volzke C, Prommer N, Schmidt-Trucksass A, Frese F, Spahl O, Eastwood A, Stray-Gundersen J, Schmidt W (2012) The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. doi: 10.1007/s00421-012-2536-0 Google Scholar
  45. Wilber RL (2001) Current trends in altitude training. Sports Med 31(4):249–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Christian Bonne
    • 1
  • Carsten Lundby
    • 2
  • Susanne Jørgensen
    • 3
  • Lars Johansen
    • 3
  • Monija Mrgan
    • 4
  • Signe Refsgaard Bech
    • 1
  • Mikael Sander
    • 5
  • Marcelo Papoti
    • 6
  • Nikolai Baastrup Nordsborg
    • 1
    Email author
  1. 1.Department of Nutrition, Exercise and Sport Sciences, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Zurich Center of Integrative Human Physiology, Institute of PhysiologyUniversity of ZürichZurichSwitzerland
  3. 3.National Test Center, Team DenmarkUniversity of Southern DenmarkOdenseDenmark
  4. 4.Department of EndocrinologyHospital of Southwest DenmarkEsbjergDenmark
  5. 5.Department of Cardiology, The Copenhagen Muscle Research Center and Flight MedicineRigshospitaletCopenhagenDenmark
  6. 6.Faculty of Science and TechnologyUniversidade Estadual PaulistaSão PauloBrazil

Personalised recommendations