European Journal of Applied Physiology

, Volume 114, Issue 6, pp 1143–1152 | Cite as

Atrial functional and geometrical remodeling in highly trained male athletes: for better or worse?

  • Luigi Gabrielli
  • Bart H. Bijnens
  • Constantine Butakoff
  • Nicolas Duchateau
  • Silvia Montserrat
  • Beatriz Merino
  • Josep Gutierrez
  • Carles Paré
  • Lluis Mont
  • Josep Brugada
  • Marta Sitges
Original Article

Abstract

Purpose

Highly trained athletes have an increased risk of atrial arrhythmias. Atrial geometrical and functional remodeling may be the underlying substrate. We analyze and relate atrial size, deformation and performance in professional handball players compared with non-sportive subjects.

Methods

24 Professional handball players and 20 non-sportive males were compared. All subjects underwent an echocardiographic study with evaluation of left (LA), right atrial (RA) dimensions and deformation by strain (Sa) and strain rate (SRa). Atrial performance was assessed from the atrial stroke volume (SV). With computational geometrical models, we studied the relation between atrial volumes, strains and SV and compared atrial working conditions. We estimated the functional reserve and a resulting average wall stress.

Results

LA and RA volumes were larger in athletes than in controls (35.2 ± 8.8 vs. 24.8 ± 4.3 ml/m2, p < 0.01 and 29.0 ± 8.4 vs. 19.0 ± 5.1 ml/m2, p < 0.01 respectively). LASa and RASa during active atrial contraction were decreased in athletes (−12.2 ± 2.0 vs. −14.5 ± 2.1 %, p < 0.01 and −12.1 ± 1.8 vs. −14.2 ± 1.5 %, p < 0.01 respectively). LASV was similar between groups (6.6 ± 1.4 vs. 7.3 ± 1.1 ml, p = 0.19) and RASV was lower in athletes (6.2 ± 1.3 vs. 7.2 ± 1.1 ml, p < 0.01). Computational models showed that this different operational mode potentially increases performance reserve, but at the cost of higher atrial wall stress.

Conclusion

A proportion of athletes with enlarged LA and RA showed different atrial contractile performance, likely resulting in atria working at higher wall stress.

Keywords

Atrial strain Atrial function Echocardiography Wall stress Exercise 

Abbreviations

AF

Atrial fibrillation

CMR

Cardiac magnetic resonance

LA

Left atrium

LASa

Peak negative left atrial strain during active atrial contraction

LASRa

Peak negative left atrial strain rate during active atrial contraction

LASRe

LA early diastolic peak strain rate

LASRs

LA peak strain rate during ventricular systole

LASs

LA peak strain during ventricular systole

LV

Left ventricle

RA

Right atrium

RASa

Peak negative right atrial strain during active atrial contraction

RASRa

Peak negative right atrial strain rate during active atrial contraction

RASRe

RA early diastolic peak strain rate

RASRs

RA peak strain rate during ventricular systole

RASs

RA peak strain during ventricular systole

RV

Right ventricle

SV

Stroke volume

Notes

Acknowledgments

This study was partially supported by Grants from the “Generalitat de Catalunya (Consell Catala de l’Esport)”, from “Grupo Memora (SFB-Grupo Memora)”, Spanish Society of Cardiology (Spanish Heart Foundation), from the “Plan Nacional I + D + I”, Spanish Government (DEP2010-20565), and from the “Subprograma de Proyectos en Salud”, Instituto de Salud Carlos III, Spanish Government (FIS—PI11/01709).

Conflict of interest

Authors have nothing to disclose.

Supplementary material

421_2014_2845_MOESM1_ESM.doc (294 kb)
Supplementary material 1 (DOC 294 kb)

References

  1. Abdulla J, Rokkedal J (2009) Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11:1156–1159PubMedCrossRefGoogle Scholar
  2. Benito B, Gay-Jordi G, Serrano-Mollar A et al (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123:13–22PubMedCrossRefGoogle Scholar
  3. Bijnens BH, Cikes M, Butakoff C, Sitges M, Crispi F (2012) Myocardial motion and deformation: what does it tell as and how does it relate to function? Fetal Diag Ther 32:5–16CrossRefGoogle Scholar
  4. D′Andrea Riegler L, Rucco MA et al (2013) Left atrial volume index in healthy subjects: clinical and echocardiographic correlates. Echocardiography 30:1001–1007Google Scholar
  5. D′Andrea A, Riegler L, Cocchia R et al (2010) Left atrial volume index in highly trained athletes. Am Heart J 159:1155–1161PubMedCrossRefGoogle Scholar
  6. Di Martino E, Bellini C, Schwartzman D (2011) In vivo porcine left atrial wall stress: effect of ventricular tachypacing on spatial and temporal stress distribution. J Biomech 44:2755–2760PubMedCrossRefGoogle Scholar
  7. Elosua R, Arquer A, Mont L, García-Moran E, Brugada J, Marrugat J (2006) Sport practice and the risk of lone atrial fibrillation: a case control study. Int J Cardiol 108:332–337PubMedCrossRefGoogle Scholar
  8. Erol MK, Karakelleoglu S (2002) Assessment of right heart function in the athletes heart. Heart Vessels 16:175–180PubMedCrossRefGoogle Scholar
  9. Falsetti HL, Mates RE, Grant C, Greene DG, Bunnell IL (1970) Left ventricular wall stress calculated from one-plane cineangiography. Circ Res 26:71–83PubMedCrossRefGoogle Scholar
  10. Gabrielli L, Corbalan R, Córdova S et al (2011) Left atrial dysfunction is a predictor of postcoronary artery bypass atrial fibrillation: association of left atrial strain and strain rate assessed by speckle tracking. Echocardiography 28:1104–1108PubMedCrossRefGoogle Scholar
  11. Gabrielli L, Enríquez A, Córdova S, Yañez F, Godoy I, Corbalán R (2012) Assessment of left atrial function in hypertrophic cardiomyopathy and athlete′s heart: a left atrial myocardial deformation study. Echocardiography 29:943–949PubMedCrossRefGoogle Scholar
  12. Hoogsteen J, Schep G, Van Hemel NM, Van Der Wall EE (2004) Paroxysmal atrial fibrillation in male endurance athletes. A 9 years follow up. Europace 6:222–228PubMedCrossRefGoogle Scholar
  13. Hunter RJ, Liu Y, Lu Y, Wang W, Schilling RJ (2012) Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ Arrhythm Electrophysiol 5:351–360PubMedCrossRefGoogle Scholar
  14. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108PubMedCrossRefGoogle Scholar
  15. Marciniak A, Claus P, Sutherland GR et al (2007) Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur Heart J 28:2627–2636PubMedCrossRefGoogle Scholar
  16. Margreet A, Maass A, Oberdorf-Maass S, Van Veldhuisen D, Van Gilst W, Van Gelder I (2010) Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res 89:754–765Google Scholar
  17. Mirsky I, Krayenbuehl HP (1981) The role of wall stress in the assessment of ventricular function. Herz 6:288–299PubMedGoogle Scholar
  18. Molina L, Mont L, Marrugat J et al (2008) Long term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow up study. Europace 10:618–623PubMedCrossRefGoogle Scholar
  19. Padeletti M, Cameli M, Lisi M, Malandrino A, Zacá V, Montillo S (2012) Reference values of right atrial longitudinal strain imaging by two-dimensional speckle tracking. Echocardiography 29:147–152PubMedCrossRefGoogle Scholar
  20. Pelliccia A, Maron BJ, Di Paolo FM et al (2005) Prevalence and clinical significance of left atrial remodelling in competitive athletes. J Am Coll Cardiol 46:690–696PubMedCrossRefGoogle Scholar
  21. Prinz C, Van Buuren F, Bogunovic N, Bitter T, Faber L, Horstkotte D (2012) In patients with hypertrophic cardiomyopathy myocardial fibrosis is associated with both left ventricular and left atrial dysfunction. Acta Cardiol 67:187–193PubMedGoogle Scholar
  22. Saraiva RM, Demirkol S, Buakhamsri A et al (2010) Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr 2:172–180CrossRefGoogle Scholar
  23. Schneider C, Malisius R, Krause K, Bahlmann E, Boczor S (2008) Strain rate imaging for functional quantification of the left atrium: atrial deformation predicts the maintenance of sinus rhythm after catheter ablation of atrial fibrillation. Eur Heart J 20:1397–1409CrossRefGoogle Scholar
  24. Sitges M, Teijeira VA, Scalise A et al (2007) Is there an anatomical substrate for idiopathic paroxismal atrial fibrillation? A case control echocardiographic study. Europace 9:294–298PubMedCrossRefGoogle Scholar
  25. Sorokin AV, Araujo CG, Zweibel S, Thompson PD (2011) Atrial fibrillation in endurance-trained athletes. Br J Sports Med 45:185–188PubMedCrossRefGoogle Scholar
  26. Tsai CT, Tseng CD, Hwang JJ et al (2011) Tachycardia of atrial myocites induces collagen expression in atrial fibroblasts through transforming growth factor B1. Cardiovasc Res 89:805–815PubMedCrossRefGoogle Scholar
  27. Tsang MY, Barnes ME, Tsang TS (2012) Left atrial volume: clinical value revisited. Curr Cardiol Rep 14:374–380PubMedCrossRefGoogle Scholar
  28. Turagam M, Velagapudi P, Kocheril A (2012) Atrial fibrillation in athletes. Am J Cardiol 109:296–302PubMedCrossRefGoogle Scholar
  29. Van Buuren F, Mellwig KP, Faber L et al (2012) The occurrence of atrial fibrillation in former top-level handball players above the age of 50. Acta Cardiol 67:213–220PubMedGoogle Scholar
  30. Wilhelm M, Roten L, Tanner H, Wilhelm I, Schmid JP, Saner H (2011) Atrial remodeling, autonomic tone and lifetime training hours in nonelite athletes. Am J Cardiol 108:580–585PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luigi Gabrielli
    • 1
    • 2
  • Bart H. Bijnens
    • 3
    • 4
  • Constantine Butakoff
    • 3
  • Nicolas Duchateau
    • 1
  • Silvia Montserrat
    • 1
  • Beatriz Merino
    • 1
  • Josep Gutierrez
    • 5
  • Carles Paré
    • 1
  • Lluis Mont
    • 1
  • Josep Brugada
    • 1
  • Marta Sitges
    • 1
  1. 1.Thorax Clinic Institute, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i SunyerUniversity of BarcelonaBarcelonaSpain
  2. 2.Cardiovascular Disease DivisionPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Universitat Pompeu FabraBarcelonaSpain
  4. 4.ICREA (Institució Catalana de Recerca i Estudis Avançats)BarcelonaSpain
  5. 5.Consell Catala de l′EsportBarcelonaSpain

Personalised recommendations