European Journal of Applied Physiology

, Volume 114, Issue 5, pp 1075–1084 | Cite as

Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women

  • Rodrigo Fernandez-Gonzalo
  • Tommy R. Lundberg
  • Lucia Alvarez-Alvarez
  • José A. de Paz
Original Article



This study assessed markers of muscle damage and training adaptations to eccentric-overload flywheel resistance exercise (RE) in men and women.


Dynamic strength (1 RM), jump performance, maximal power at different percentages of 1 RM, and muscle mass in three different portions of the thigh were assessed in 16 men and 16 women before and after 6 weeks (15 sessions) of flywheel supine squat RE training. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured before, 24, 48 and 72 h after the first and the last training session.


After training, increases in 1 RM were somewhat greater (interaction P < 0.001) in men (25 %) than in women (20 %). Squat and drop jump height and power performance at 50, 60, 70 and 80 % of 1 RM increased after training in both sexes (P < 0.05). Power improvement at 80 % of 1 RM was greater (interaction P < 0.02) in men than women. Muscle mass increased ~5 % in both groups (P < 0.05). CK increased in men after the first training session (P < 0.001), whereas the response in women was unaltered. In both sexes, LDH concentration was greater after the first training session compared with basal values (P < 0.05). After the last session, CK and LDH remained at baseline in both groups.


These results suggest that although improvements in maximal strength and power at high loads may be slightly greater for men, eccentric-overload RE training induces comparable and favorable gains in strength, power, and muscle mass in both men and women. Equally important, it appears muscle damage does not interfere with the adaptations triggered by this training paradigm.


1 RM Power Muscle hypertrophy CK LDH 



Analysis of variance


Creatine kinase


Countermovement jump




Drop jump


Dual energy X-ray absorptiometry




Lactate dehydrogenase


Magnetic resonance imaging


Resistance exercise


Repetition maximum


Standard error of the mean


Squat jump



This study was partly funded by Consejería de Educación, Junta de Castilla y León, Spain.

Conflict of interest

The authors declare no conflicts of interest.


  1. Abe T, DeHoyos DV, Pollock ML, Garzarella L (2000) Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol 81(3):174–180. doi: 10.1007/s004210050027 PubMedCrossRefGoogle Scholar
  2. Alkner BA, Tesch PA (2004a) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181(3):345–357. doi: 10.1111/j.1365-201X.2004.01293.x PubMedCrossRefGoogle Scholar
  3. Alkner BA, Tesch PA (2004b) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93(3):294–305. doi: 10.1007/s00421-004-1172-8 PubMedCrossRefGoogle Scholar
  4. Allen DG (2001) Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol Scand 171(3):311–319. doi: 10.1046/j.1365-201x.2001.00833.x PubMedCrossRefGoogle Scholar
  5. Andreoli A, Scalzo G, Masala S, Tarantino U, Guglielmi G (2009) Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med 114(2):286–300. doi: 10.1007/s11547-009-0369-7 PubMedCrossRefGoogle Scholar
  6. Askling C, Karlsson J, Thorstensson A (2003) Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports 13(4):244–250PubMedCrossRefGoogle Scholar
  7. Barroso R, Roschel H, Ugrinowitsch C, Araujo R, Nosaka K, Tricoli V (2010) Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise. Appl Physiol Nutr Metab 35(4):534–540. doi: 10.1139/H10-042 PubMedCrossRefGoogle Scholar
  8. Berg HE, Tesch A (1994) A gravity-independent ergometer to be used for resistance training in space. Aviat Space Environ Med 65(8):752–756PubMedGoogle Scholar
  9. Billaut F, Smith K (2009) Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab 34(4):689–699. doi: 10.1139/H09-058 PubMedCrossRefGoogle Scholar
  10. Cannon JG, Meydani SN, Fielding RA, Fiatarone MA, Meydani M, Farhangmehr M, Orencole SF, Blumberg JB, Evans WJ (1991) Acute phase response in exercise. II. Associations between vitamin E, cytokines, and muscle proteolysis. Am J Physiol 260(6 Pt 2):1235–1240Google Scholar
  11. Chen TC, Chen HL, Lin MJ, Wu CJ, Nosaka K (2009) Muscle damage responses of the elbow flexors to four maximal eccentric exercise bouts performed every 4 weeks. Eur J Appl Physiol 106(2):267–275. doi: 10.1007/s00421-009-1016-7 PubMedCrossRefGoogle Scholar
  12. Colliander EB, Tesch PA (1990) Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand 140(1):31–39PubMedCrossRefGoogle Scholar
  13. Colliander EB, Tesch PA (1991) Responses to eccentric and concentric resistance training in females and males. Acta Physiol Scand 141(2):149–156PubMedCrossRefGoogle Scholar
  14. Colliander EB, Tesch PA (1992) Effects of detraining following short term resistance training on eccentric and concentric muscle strength. Acta Physiol Scand 144(1):23–29PubMedCrossRefGoogle Scholar
  15. Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Bailey JA, Rabon-Stith KM, Conway JM, Carignan CR, Lang J, Hurley BF (2005) Effects of moderate-velocity strength training on peak muscle power and movement velocity: do women respond differently than men? J Appl Physiol 99(5):1712–1718. doi: 10.1152/japplphysiol.01204.2004 PubMedCrossRefGoogle Scholar
  16. Dudley GA, Tesch PA, Harris RT, Golden CL, Buchanan P (1991a) Influence of eccentric actions on the metabolic cost of resistance exercise. Aviat Space Environ Med 62(7):678–682PubMedGoogle Scholar
  17. Dudley GA, Tesch PA, Miller BJ, Buchanan P (1991b) Importance of eccentric actions in performance adaptations to resistance training. Aviat Space Environ Med 62(6):543–550PubMedGoogle Scholar
  18. Esbjornsson M, Rundqvist HC, Mascher H, Osterlund T, Rooyackers O, Blomstrand E, Jansson E (2012) Sprint exercise enhances skeletal muscle p70S6 k phosphorylation and more so in women than in men. Acta Physiol (Oxf) 205(3):411–422. doi: 10.1111/j.1748-1716.2012.02404.x CrossRefGoogle Scholar
  19. Fernandez-Gonzalo R, De Paz JA, Rodriguez-Miguelez P, Cuevas MJ, Gonzalez-Gallego J (2012) Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells. J Appl Physiol 112(12):2011–2018. doi: 10.1152/japplphysiol.01499.2011 PubMedCrossRefGoogle Scholar
  20. Garcia-Lopez D, Cuevas MJ, Almar M, Lima E, De Paz JA, Gonzalez-Gallego J (2007) Effects of eccentric exercise on NF-kappaB activation in blood mononuclear cells. Med Sci Sports Exerc 39(4):653–664. doi: 10.1249/mss.0b013e31802f04f6 PubMedCrossRefGoogle Scholar
  21. Golden CL, Dudley GA (1992) Strength after bouts of eccentric or concentric actions. Med Sci Sports Exerc 24(8):926–933PubMedCrossRefGoogle Scholar
  22. Hansen RD, Williamson DA, Finnegan TP, Lloyd BD, Grady JN, Diamond TH, Smith EUR, Stavrinos TM, Thompson MW, Gwinn TH (2007) Estimation of thigh muscle cross-sectional area by dual-energy X-ray absorptiometry in frail elderly patients. Am J Clin Nutr 86(4):952PubMedGoogle Scholar
  23. Hather BM, Tesch PA, Buchanan P, Dudley GA (1991) Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand 143(2):177–185PubMedCrossRefGoogle Scholar
  24. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37(6):964–972PubMedGoogle Scholar
  25. Kraemer WJ, Staron RS, Hagerman FC, Hikida RS, Fry AC, Gordon SE, Nindl BC, Gothshalk LA, Volek JS, Marx JO, Newton RU, Hakkinen K (1998) The effects of short-term resistance training on endocrine function in men and women. Eur J Appl Physiol Occup Physiol 78(1):69–76PubMedCrossRefGoogle Scholar
  26. Krentz JR, Farthing JP (2010) Neural and morphological changes in response to a 20-day intense eccentric training protocol. Eur J Appl Physiol 110(2):333–340. doi: 10.1007/s00421-010-1513-8 PubMedCrossRefGoogle Scholar
  27. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA (2013) Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol 114(1):81–89. doi: 10.1152/japplphysiol.01013.2012 PubMedCrossRefGoogle Scholar
  28. Mastaloudis A, Traber MG, Carstensen K, Widrick JJ (2006) Antioxidants did not prevent muscle damage in response to an ultramarathon run. Med Sci Sports Exerc 38(1):72–80. doi: 00005768-200601000-00012 PubMedCrossRefGoogle Scholar
  29. Melnyk JA, Rogers MA, Hurley BF (2009) Effects of strength training and detraining on regional muscle in young and older men and women. Eur J Appl Physiol 105(6):929–938. doi: 10.1007/s00421-008-0979-0 PubMedCrossRefGoogle Scholar
  30. Milias GA, Nomikos T, Fragopoulou E, Athanasopoulos S, Antonopoulou S (2005) Effects of eccentric exercise-induced muscle injury on blood levels of platelet activating factor (PAF) and other inflammatory markers. Eur J Appl Physiol 95(5–6):504–513. doi: 10.1007/s00421-005-0031-6 PubMedCrossRefGoogle Scholar
  31. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66(3):254–262PubMedCrossRefGoogle Scholar
  32. Neme Ide B, Alessandro Soares Nunes L, Brenzikofer R, Macedo DV (2013) Time course of muscle damage and inflammatory responses to resistance training with eccentric overload in trained individuals. Mediat Inflamm 2013:204942. doi: 10.1155/2013/204942 CrossRefGoogle Scholar
  33. Norrbrand L, Fluckey JD, Pozzo M, Tesch PA (2008) Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol 102(3):271–281. doi: 10.1007/s00421-007-0583-8 PubMedCrossRefGoogle Scholar
  34. Norrbrand L, Pozzo M, Tesch PA (2010) Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol 110(5):997–1005. doi: 10.1007/s00421-010-1575-7 PubMedCrossRefGoogle Scholar
  35. Norrbrand L, Tous-Fajardo J, Vargas R, Tesch PA (2011) Quadriceps muscle use in the flywheel and barbell squat. Aviat Space Environ Med 82(1):13–19PubMedCrossRefGoogle Scholar
  36. Nosaka K, Newton M (2002) Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 34(1):63–69PubMedCrossRefGoogle Scholar
  37. O’Hagan FT, Sale DG, MacDougall JD, Garner SH (1995) Response to resistance training in young women and men. Int J Sports Med 16(5):314–321. doi: 10.1055/s-2007-973012 PubMedCrossRefGoogle Scholar
  38. Petrella JK, Kim JS, Tuggle SC, Bamman MM (2007) Contributions of force and velocity to improved power with progressive resistance training in young and older adults. Eur J Appl Physiol 99(4):343–351. doi: 10.1007/s00421-006-0353-z PubMedCrossRefGoogle Scholar
  39. Ploutz-Snyder LL, Giamis EL, Formikell M, Rosenbaum AE (2001) Resistance training reduces susceptibility to eccentric exercise-induced muscle dysfunction in older women. J Gerontol A Biol Sci Med Sci 56(9):384–390CrossRefGoogle Scholar
  40. Rittweger J, Felsenberg D, Maganaris C, Ferretti JL (2007) Vertical jump performance after 90 days bed rest with and without flywheel resistive exercise, including a 180 days follow-up. Eur J Appl Physiol 100(4):427–436. doi: 10.1007/s00421-007-0443-6 PubMedCrossRefGoogle Scholar
  41. Romero-Rodriguez D, Gual G, Tesch PA (2011) Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: a case-series study. Phys Ther Sport 12(1):43–48. doi: 10.1016/j.ptsp.2010.10.003 PubMedCrossRefGoogle Scholar
  42. Schroeder ET, Hawkins SA, Jaque SV (2004) Musculoskeletal adaptations to 16 weeks of eccentric progressive resistance training in young women. J Strength Cond Res 18(2):227–235. doi: 10.1519/r-13443.1 PubMedCrossRefGoogle Scholar
  43. Shephard RJ (2000) Exercise and training in women, part I: influence of gender on exercise and training responses. Can J Appl Physiol 25(1):19–34PubMedCrossRefGoogle Scholar
  44. Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS (1994) Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 76(3):1247–1255PubMedGoogle Scholar
  45. Stupka N, Lowther S, Chorneyko K, Bourgeois JM, Hogben C, Tarnopolsky MA (2000) Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 89(6):2325–2332PubMedGoogle Scholar
  46. Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 91(4):1669–1678PubMedGoogle Scholar
  47. Tesch PA, Ekberg A, Lindquist DM, Trieschmann JT (2004) Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol Scand 180(1):89–98PubMedCrossRefGoogle Scholar
  48. Thompson HS, Scordilis SP (1994) Ubiquitin changes in human biceps muscle following exercise-induced damage. Biochem Biophys Res Commun 204(3):1193–1198. doi: 10.1006/bbrc.1994.2589 PubMedCrossRefGoogle Scholar
  49. Tiidus PM (2000) Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can J Appl Physiol 25(4):274–287PubMedCrossRefGoogle Scholar
  50. Trappe TA, Burd NA, Louis ES, Lee GA, Trappe SW (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol (Oxf) 191(2):147–159. doi: 10.1111/j.1748-1716.2007.01728.x CrossRefGoogle Scholar
  51. Velders M, Diel P (2013) How sex hormones promote skeletal muscle regeneration. Sports Med 43(11):1089–1100. doi: 10.1007/s40279-013-0081-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rodrigo Fernandez-Gonzalo
    • 1
    • 2
  • Tommy R. Lundberg
    • 3
  • Lucia Alvarez-Alvarez
    • 2
  • José A. de Paz
    • 2
  1. 1.Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
  2. 2.Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
  3. 3.Department of Health SciencesMid Sweden UniversityÖstersundSweden

Personalised recommendations