European Journal of Applied Physiology

, Volume 114, Issue 5, pp 1013–1023 | Cite as

Adaptations of aortic and pulmonary artery flow parameters measured by phase-contrast magnetic resonance angiography during supine aerobic exercise

  • Guido E. PielesEmail author
  • Gergely Szantho
  • Jonathan C. L. Rodrigues
  • Christopher B. Lawton
  • A. Graham Stuart
  • Chiara Bucciarelli-Ducci
  • Mark S. Turner
  • Craig A. Williams
  • Robert M. R. Tulloh
  • Mark C. K. Hamilton
Original Article



Increased oxygen uptake and utilisation during exercise depend on adequate adaptations of systemic and pulmonary vasculature. Recent advances in magnetic resonance imaging techniques allow for direct quantification of aortic and pulmonary blood flow using phase-contrast magnetic resonance angiography (PCMRA). This pilot study tested quantification of aortic and pulmonary haemodynamic adaptations to moderate aerobic supine leg exercise using PCMRA.


Nine adult healthy volunteers underwent pulse gated free breathing PCMRA while performing heart rate targeted aerobic lower limb exercise. Flow was assessed in mid ascending and mid descending thoracic aorta (AO) and main pulmonary artery (MPA) during exercise at 180 % of individual resting heart rate. Flow sequence analysis was performed by experienced operators using commercial offline software (Argus, Siemens Medical Systems).


Exercise related increase in HR (rest: 69 ± 10 b min−1, exercise: 120 ± 13 b min−1) resulted in cardiac output increase (from 6.5 ± 1.4 to 12.5 ± 1.8 L min−1). At exercise, ascending aorta systolic peak velocity increased from 89 ± 14 to 122 ± 34 cm s−1 (p = 0.016), descending thoracic aorta systolic peak velocity increased from 104 ± 14 to 144 ± 33 cm s−1 (p = 0.004), MPA systolic peak velocity from 86 ± 18 to 140 ± 48 cm s−1 (p = 0.007), ascending aorta systolic peak flow rate from 415 ± 83 to 550 ± 135 mL s−1 (p = 0.002), descending thoracic aorta systolic peak flow rate from 264 ± 70 to 351 ± 82 mL s−1 (p = 0.004) and MPA systolic peak flow rate from 410 ± 80 to 577 ± 180 mL s−1 (p = 0.006).


Quantitative blood flow and velocity analysis during exercise using PCMRA is feasible and detected a steep exercise flow and velocity increase in the aorta and MPA. Exercise PCMRA can serve as a research and clinical tool to help quantify exercise blood flow adaptations in health and disease and investigate patho-physiological mechanisms in cardio-pulmonary disease.


Exercise adaptations Blood flow Magnetic resonance imaging Imaging methodology Feasibility Cardio-pulmonary disease 





Cardio-pulmonary exercise test


Field of view


Magnetic resonance imaging


Pulmonary artery


Pulmonary arterial hypertension


Phase-contrast magnetic resonance angiography


Pulmonary vascular resistance


Right ventricle


Echo time


Repetition time


Velocity encoding



The study was supported and hosted by the Bristol NIHR Biomedical Research Unit for Cardiovascular Disease. GEP holds a NIHR/University of Bristol Academic Clinical Lectureship. We express our gratitude to C. Rogers for statistical support.

Conflict of interest

None of the authors declare any conflict of interest.

Supplementary material

Supplementary material 1 (MOV 26264 kb)

Supplementary material 2 (AVI 3366 kb)

Supplementary material 3 (AVI 3395 kb)

421_2014_2833_MOESM4_ESM.docx (61 kb)
Supplementary material 4 (DOCX 61 kb)


  1. Arheden H, Holmqvist C, Thilen U, Hanseus K, Bjorkhem G, Pahlm O, Laurin S, Stahlberg F (1999) Left-to-right cardiac shunts: comparison of measurements obtained with MR velocity mapping and with radionuclide angiography. Radiology 211(2):453–458PubMedCrossRefGoogle Scholar
  2. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122(2):191–225. doi: 10.1161/CIR.0b013e3181e52e69 PubMedCrossRefGoogle Scholar
  3. Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84PubMedCrossRefGoogle Scholar
  4. Beerbaum P, Korperich H, Gieseke J, Barth P, Peuster M, Meyer H (2005) Blood flow quantification in adults by phase-contrast MRI combined with SENSE––a validation study. J Cardiovasc Magn Reson 7(2):361–369PubMedCrossRefGoogle Scholar
  5. Bestler M, Alt E, Montoya P, Schandry R (1992) Effect of body posture on heart rate and cardiocirculatory parameters in stress––implications for frequency-adapted pacemaker systems. Z Kardiol 81(1):25–29PubMedGoogle Scholar
  6. Bevegard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise. with special reference to stroke volume and the influence of body position. Acta Physiol Scand 57:26–50PubMedCrossRefGoogle Scholar
  7. Flamm SD, Taki J, Moore R, Lewis SF, Keech F, Maltais F, Ahmad M, Callahan R, Dragotakes S, Alpert N et al (1990) Redistribution of regional and organ blood volume and effect on cardiac function in relation to upright exercise intensity in healthy human subjects. Circulation 81(5):1550–1559PubMedCrossRefGoogle Scholar
  8. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15(10):2172–2184. doi: 10.1007/s00330-005-2829-3 PubMedCrossRefGoogle Scholar
  9. Granath A, Jonsson B, Strandell T (1964) Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med Scand 176:425–446PubMedCrossRefGoogle Scholar
  10. Groepenhoff H, Holverda S, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A (2007) Stroke volume response during exercise measured by acetylene uptake and MRI. Physiol Meas 28(1):1–11PubMedCrossRefGoogle Scholar
  11. Gusso S, Salvador C, Hofman P, Cutfield W, Baldi JC, Taberner A, Nielsen P (2012) Design and testing of an MRI-compatible cycle ergometer for non-invasive cardiac assessments during exercise. Biomed Eng Online 11:13. doi: 101186/1475-925X-11-13[pii]PubMedCentralPubMedCrossRefGoogle Scholar
  12. Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR (1986) Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 58(2):281–291PubMedCrossRefGoogle Scholar
  13. Holverda S, Gan CT, Marcus JT, Postmus PE, Boonstra A, Vonk-Noordegraaf A (2006) Impaired stroke volume response to exercise in pulmonary arterial hypertension. J Am Coll Cardiol 47(8):1732–1733. doi: 10.1016/j.jacc.2006.01.048S0735-1097(06)00295-6[pii]PubMedCrossRefGoogle Scholar
  14. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34(4):888–894. doi: 10.1183/09031936.00145608 PubMedCrossRefGoogle Scholar
  15. Kovacs G, Olschewski A, Berghold A, Olschewski H (2012) Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J 39(2):319–328. doi: 10.1183/09031936.00008611[pii]PubMedCrossRefGoogle Scholar
  16. La Gerche A, Heidbuchel H, Burns AT, Mooney DJ, Taylor AJ, Pfluger HB, Inder WJ, Macisaac AI, Prior DL (2011) Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc 43(6):974–981. doi: 10.1249/MSS.0b013e31820607a3 PubMedCrossRefGoogle Scholar
  17. La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, Macisaac AI, Heidbuchel H, Prior DL (2012a) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006. doi: 10.1093/eurheartj/ehr397[pii]PubMedCrossRefGoogle Scholar
  18. La Gerche A, Claessen G, Van De Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, Bogaert J, Dymarkowski S, Claus P, Heidbuchel H (2012b) Cardiac magnetic resonance imaging: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.112.980037 PubMedGoogle Scholar
  19. Ley S, Unterhinninghofen R, Ley-Zaporozhan J, Schenk JP, Kauczor HU, Szabo G (2008) Validation of magnetic resonance phase-contrast flow measurements in the main pulmonary artery and aorta using perivascular ultrasound in a large animal model. Invest Radiol 43(6):421–426. doi: 10.1097/RLI.0b013e318169015d PubMedCrossRefGoogle Scholar
  20. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671PubMedCrossRefGoogle Scholar
  21. Lurz P, Muthurangu V, Schievano S, Nordmeyer J, Bonhoeffer P, Taylor AM, Hansen MS (2009) Feasibility and reproducibility of biventricular volumetric assessment of cardiac function during exercise using real-time radial k-t SENSE magnetic resonance imaging. J Magn Reson Imaging 29(5):1062–1070. doi: 10.1002/jmri.21762 PubMedCrossRefGoogle Scholar
  22. Mauritz GJ, Marcus JT, Boonstra A, Postmus PE, Westerhof N, Vonk-Noordegraaf A (2008) Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: left-sided data mandatory. J Cardiovasc Magn Reson 10:51. doi: 10.1186/1532-429X-10-51[pii]PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mymin D, Sharma GP (1974) Total and effective coronary blood flow in coronary and noncoronary heart disease. J Clin Invest 53(2):363–373. doi: 10.1172/JCI107568 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Naeije R, Chesler N (2012) Pulmonary Circulation at Exercise. Compr Physiol 2(1):711–741. doi: 10.1002/cphy.c100091 PubMedCentralPubMedGoogle Scholar
  25. Parker JO, Thadani U (1979) Cardiac performance at rest and during exercise in normal subjects. Bull Eur Physiopathol Respir 15(5):935–949PubMedGoogle Scholar
  26. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol 56(5):1237–1245PubMedGoogle Scholar
  27. Poliner LR, Dehmer GJ, Lewis SE, Parkey RW, Blomqvist CG, Willerson JT (1980) Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 62(3):528–534PubMedCrossRefGoogle Scholar
  28. Secchi F, Iozzelli A, Papini GD, Aliprandi A, Di Leo G, Sardanelli F (2009) MR imaging of aortic coarctation. Radiol Med 114(4):524–537. doi: 10.1007/s11547-009-0386-6 PubMedCrossRefGoogle Scholar
  29. Steding-Ehrenborg K, Jablonowski R, Arvidsson PM, Carlsson M, Saltin B, Arheden H (2013) Moderate intensity supine exercise causes decreased cardiac volumes and increased outer volume variations: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 15(1):96. doi: 10.1186/1532-429X-15-96[pii]PubMedCrossRefGoogle Scholar
  30. Steeden JA, Atkinson D, Taylor AM, Muthurangu V (2010) Assessing vascular response to exercise using a combination of real-time spiral phase contrast MR and noninvasive blood pressure measurements. J Magn Reson Imaging 31(4):997–1003. doi: 10.1002/jmri.22105 PubMedCrossRefGoogle Scholar
  31. Varaprasathan GA, Araoz PA, Higgins CB, Reddy GP (2002) Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging. Radiographics 22(4):895–905 discussion 905–896PubMedCrossRefGoogle Scholar
  32. Warburton DE, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Humen DP (2002) Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Exp Physiol 87(5):613–622PubMedCrossRefGoogle Scholar
  33. Weber TF, von Tengg-Kobligk H, Kopp-Schneider A, Ley-Zaporozhan J, Kauczor HU, Ley S (2011) High-resolution phase-contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer. Eur J Radiol 80(1):103–108. doi: 10.1016/j.ejrad.2010.06.045 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guido E. Pieles
    • 1
    • 2
    Email author
  • Gergely Szantho
    • 1
  • Jonathan C. L. Rodrigues
    • 3
  • Christopher B. Lawton
    • 3
  • A. Graham Stuart
    • 1
  • Chiara Bucciarelli-Ducci
    • 2
  • Mark S. Turner
    • 1
  • Craig A. Williams
    • 4
  • Robert M. R. Tulloh
    • 1
  • Mark C. K. Hamilton
    • 2
    • 3
  1. 1.Congenital Heart UnitBristol Royal Hospital for Children/Bristol Heart InstituteBristolUK
  2. 2.National Institute for Health Research (NIHR), Cardiovascular Biomedical Research UnitBristol Heart Institute, Bristol Royal InfirmaryBristolUK
  3. 3.Department of RadiologyBristol Royal InfirmaryBristolUK
  4. 4.Children’s Health and Exercise Research Centre (CHERC), College of Life and Environmental Sciences, St. Luke’s CampusUniversity of ExeterExeterUK

Personalised recommendations