Advertisement

European Journal of Applied Physiology

, Volume 114, Issue 4, pp 735–742 | Cite as

Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle

  • Ryo Kakigi
  • Toshinori Yoshihara
  • Hayao Ozaki
  • Yuji Ogura
  • Noriko Ichinoseki-Sekine
  • Hiroyuki Kobayashi
  • Hisashi Naito
Original Article

Abstract

Purpose

Protein ingestion after resistance exercise increases muscle protein synthesis (MPS) in a dose-dependent manner. However, the molecular mechanism(s) for the dose-dependency of MPS remains unclear. This study aimed to determine the dose response of mammalian target of rapamycin (mTOR) signaling in muscle with ingestion of protein after resistance exercise.

Methods

Fifteen male subjects performed four sets of six unilateral isokinetic concentric knee extensions. Immediately after exercise, eight subjects consumed water only. The other seven subjects, in a randomized-order crossover design, took either a 10 [3.6 g essential amino acids (EAA)] or 20 g (7.1 g EAA) solution of whey protein. Muscle biopsies from the vastus lateralis muscle were taken 30 min before and 1 h after resistance exercise. Phosphorylation of Akt (Ser473), mTOR (Ser2448), 4E-BP1 (Thr37/46), and S6K1 (Thr389) was measured by western blotting.

Results

Concentric knee extension exercise alone did not increase phosphorylation of Akt and mTOR 1 h after exercise, but ingesting protein after exercise significantly increased the phosphorylation of Akt and mTOR in a dose-dependent manner (P < 0.05). 4E-BP1 phosphorylation significantly decreased after resistance exercise (P < 0.05), but subjects who took 10 or 20 g of protein after exercise showed increased 4E-BP1 from post-exercise dephosphorylation (P < 0.05). S6K1 phosphorylation significantly increased after resistance exercise (P < 0.05), and 20 g of protein further increased S6K1 phosphorylation compared with ingestion of 10 g (P < 0.05).

Conclusions

These findings suggest that whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in untrained men.

Keywords

Mammalian target of rapamycin Whey hydrolysate Concentric contraction Muscle protein synthesis 

Abbreviations

Akt

Protein kinase B

EAA

Essential amino acids

eIF

Eukaryotic initiation factor

mTOR

Mammalian target of rapamycin

MHC

Myosin heavy chain

MPB

Muscle protein breakdown

MPS

Muscle protein synthesis

S6K1

Ribosomal protein S6 kinase 1

Notes

Acknowledgments

This study was supported by the MEXT-Supported Program for the Juntendo University, and a Grant-in Aid for Scientific Research B (No. 21300238 to HN, and No. 24700703 to RK) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank the research subjects for their invaluable contribution to this study.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ (2010) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92(5):1080–1088. doi: 10.3945/ajcn.2010.29819 PubMedCrossRefGoogle Scholar
  2. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268(3 Pt 1):E514–E520PubMedGoogle Scholar
  3. Biolo G, Tipton KD, Klein S, Wolfe RR (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 273(1 Pt 1):E122–E129PubMedGoogle Scholar
  4. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94(26):14930–14935PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63(2):351–356. doi: 10.1079/PNS2004355 PubMedCrossRefGoogle Scholar
  6. Borsheim E, Tipton KD, Wolf SE, Wolfe RR (2002) Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 283(4):E648–E657. doi: 10.1152/ajpendo.00466.2001 PubMedGoogle Scholar
  7. Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK, Phillips SM (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588(Pt 16):3119–3130. doi: 10.1113/jphysiol.2010.192856 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033. doi: 10.1371/journal.pone.0012033 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. Faseb J 20(1):190–192. doi: 10.1096/fj.05-4809fje PubMedGoogle Scholar
  10. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B (2001) The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab 280(2):E340–E348PubMedGoogle Scholar
  11. Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141(5):856–862. doi: 10.3945/jn.111.139485 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dodd KM, Tee AR (2012) Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 302(11):E1329–E1342. doi: 10.1152/ajpendo.00525.2011 PubMedCrossRefGoogle Scholar
  13. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB (2006) Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576(Pt 2):613–624. doi: 10.1113/jphysiol.2006.113175 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294(2):E392–E400. doi: 10.1152/ajpendo.00582.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB (2009a) Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol 106(4):1374–1384. doi: 10.1152/japplphysiol.91397.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009b) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(Pt 7):1535–1546. doi: 10.1113/jphysiol.2008.163816 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB (2010) An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Physiol Endocrinol Metab 298(5):E1011–E1018. doi: 10.1152/ajpendo.00690.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom B, Blomstrand E (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291(6):E1197–E1205. doi: 10.1152/ajpendo.00141.2006 PubMedCrossRefGoogle Scholar
  19. Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF (2007) A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 403(1):13–20. doi: 10.1042/BJ20061881 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582(Pt 2):813–823. doi: 10.1113/jphysiol.2007.134593 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Glynn EL, Fry CS, Drummond MJ, Dreyer HC, Dhanani S, Volpi E, Rasmussen BB (2010a) Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol 299(2):R533–R540. doi: 10.1152/ajpregu.00077.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Glynn EL, Fry CS, Drummond MJ, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB (2010b) Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J Nutr 140(11):1970–1976. doi: 10.3945/jn.110.127647 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7(5):456–465. doi: 10.1016/j.cmet.2008.03.002 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ha E, Zemel MB (2003) Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem 14(5):251–258PubMedCrossRefGoogle Scholar
  25. Hamdi MM, Mutungi G (2011) Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol 589(Pt 14):3623–3640. doi: 10.1113/jphysiol.2011.207175 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hulmi JJ, Kovanen V, Selanne H, Kraemer WJ, Hakkinen K, Mero AA (2009) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37(2):297–308. doi: 10.1007/s00726-008-0150-6 PubMedCrossRefGoogle Scholar
  27. Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki-Sekine N, Yoshihara T, Katamoto S (2011) Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci 61(2):131–140. doi: 10.1007/s12576-010-0130-y PubMedCrossRefGoogle Scholar
  28. Kimball SR, Farrell PA, Jefferson LS (2002) Invited review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93(3):1168–1180. doi: 10.1152/japplphysiol.00221.2002 PubMedGoogle Scholar
  29. Koopman R, Zorenc AH, Gransier RJ, Cameron-Smith D, van Loon LJ (2006) Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 290(6):E1245–E1252. doi: 10.1152/ajpendo.00530.2005 PubMedCrossRefGoogle Scholar
  30. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ (2009) Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587(Pt 1):211–217. doi: 10.1113/jphysiol.2008.164483 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lavender AP, Nosaka K (2008) Changes in markers of muscle damage of middle-aged and young men following eccentric exercise of the elbow flexors. J Sci Med Sport 11(2):124–131. doi: 10.1016/j.jsams.2006.11.004 PubMedCrossRefGoogle Scholar
  32. Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E (2008) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294(1):E43–E51. doi: 10.1152/ajpendo.00504.2007 PubMedCrossRefGoogle Scholar
  33. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR (2003) Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 35(3):449–455. doi: 10.1249/01.MSS.0000053910.63105.45 PubMedCrossRefGoogle Scholar
  34. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89(1):161–168. doi: 10.3945/ajcn.2008.26401 PubMedCrossRefGoogle Scholar
  35. Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90(5):1936–1942PubMedGoogle Scholar
  36. Nair KS, Schwartz RG, Welle S (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263(5 Pt 1):E928–E934PubMedGoogle Scholar
  37. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ (2011) Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 93(5):997–1005. doi: 10.3945/ajcn.110.008102 PubMedCrossRefGoogle Scholar
  38. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273(1 Pt 1):E99–E107PubMedGoogle Scholar
  39. Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G, Kjaer M, Holm L (2011) Whey and casein labeled with L-[1-13C] leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab 300(1):E231–E242. doi: 10.1152/ajpendo.00513.2010 PubMedCrossRefGoogle Scholar
  40. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi: 10.1126/science.1157535 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107(3):987–992. doi: 10.1152/japplphysiol.00076.2009 PubMedCrossRefGoogle Scholar
  42. Tannerstedt J, Apro W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106(4):1412–1418. doi: 10.1152/japplphysiol.91243.2008 PubMedCrossRefGoogle Scholar
  43. Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362–369. doi: 10.1152/physiol.00024.2006 CrossRefGoogle Scholar
  44. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586(Pt 15):3701–3717. doi: 10.1113/jphysiol.2008.153916 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, Tarnopolsky MA, Phillips SM (2012) Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr 108(10):1780–1788. doi: 10.1017/S0007114511007422 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ryo Kakigi
    • 1
    • 2
  • Toshinori Yoshihara
    • 3
  • Hayao Ozaki
    • 3
  • Yuji Ogura
    • 4
  • Noriko Ichinoseki-Sekine
    • 1
    • 3
  • Hiroyuki Kobayashi
    • 5
  • Hisashi Naito
    • 1
    • 3
  1. 1.Institute of Health and Sports Science & MedicineJuntendo UniversityInzaiJapan
  2. 2.Department of PhysiologyJuntendo University School of MedicineTokyoJapan
  3. 3.Department of Exercise Physiology, Graduate School of Health and Sports ScienceJuntendo UniversityInzaiJapan
  4. 4.Department of PhysiologySt Marianna University School of MedicineKawasakiJapan
  5. 5.Department of General MedicineMito Medical Center, Tsukuba University HospitalMitoJapan

Personalised recommendations