European Journal of Applied Physiology

, Volume 114, Issue 2, pp 331–343 | Cite as

Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise

  • Sam Esfandiari
  • Zion Sasson
  • Jack M. Goodman
Original Article



This study examined the effects of short-term high-intensity interval training (HIT) and continuous moderate-intensity training (CMT) on cardiac function in young, healthy men.


Sixteen previously untrained men (mean age of 25.1 ± 4.1 years) were randomly assigned to HIT and CMT (n = 8 each) and assessed before and after six sessions over a 12-day training period. HIT consisted of 8–12 intervals of cycling for 60 s at 95–100 % of pre-training maximal aerobic power (\(\dot{V}\)O2max), interspersed by 75 s of cycling at 10 % \(\dot{V}\)O2max. CMT involved 90–120 min of cycling at 65 % pre-training \(\dot{V}\)O2max. Left ventricular (LV) function was determined at rest and during submaximal exercise (heart rate ~105 bpm) using two-dimensional and Doppler echocardiography.


Training resulted in increased calculated plasma volume (PV) in both groups, accompanied by improved \(\dot{V}\)O2max in HIT (HIT: from 39.5 ± 7.1 to 43.9 ± 5.5 mL kg−1 min−1; CMT: from 39.9 ± 5.9 to 41.7 ± 5.3 mL kg−1 min−1; P < 0.001). Resting LV function was not altered. However, increased exercise stroke volume (P = 0.02) and cardiac output (P = 0.02) were observed, secondary to increases in end-diastolic volume (P < 0.001). Numerous Doppler and speckle tracking indices of diastolic function were similarly enhanced during exercise in both training groups and were related to changes in PV.


Short-term HIT and CMT elicit rapid improvements in \(\dot{V}\)O2max and LV filling without global changes in cardiac performance at rest.


Endurance training left ventricle High-intensity interval training Echocardiography 



Body mass index


Blood pressure


Beats per minute


Blood volume


Continuous moderate-intensity training


Cardiac output




End-diastolic volume


Ejection fraction


End-systolic volume




High-intensity interval training


Heart rate


Interventricular septum dimension during diastole


Left ventricle or left ventricular


Internal diastolic diameter of the LV


Internal systolic diameter of the LV


Left ventricular posterior wall thickness during diastole


Pulsed wave


Plasma volume


Ratio of systolic blood pressure to end-systolic volume; index of contractility


Stroke volume


Tissue Doppler imaging


Maximal oxygen consumption or maximal aerobic capacity



The authors thank Ms. Joan Persaud for her helpful technical assistance.

Conflict of interest



  1. Arbab-Zadeh A, Dijk E, Prasad A, Fu Q, Torres P, Zhang R, Thomas JD, Palmer D, Levine BD (2004) Effect of aging and physical activity on left ventricular compliance. Circulation 110(13):1799–1805. doi: 10.1161/01.CIR.0000142863.71285.74 PubMedCrossRefGoogle Scholar
  2. Bhella PS, Pacini EL, Prasad A, Hastings JL, Adams-Huet B, Thomas JD, Grayburn PA, Levine BD (2011) Echocardiographic indices do not reliably track changes in left-sided filling pressure in healthy subjects or patients with heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 4(5):482–489. doi: 10.1161/CIRCIMAGING.110.960575 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Blomqvist CG, Saltin B (1983) Cardiovascular adaptations to physical training. Annu Rev Physiol 45:169–189. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  4. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98(6):1985–1990. doi: 10.1152/japplphysiol.01095.2004 PubMedCrossRefGoogle Scholar
  5. Burgomaster KA, Heigenhauser GJ, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol 100(6):2041–2047. doi: 10.1152/japplphysiol.01220.2005 PubMedCrossRefGoogle Scholar
  6. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi: 10.1113/jphysiol.2007.142109 PubMedCrossRefGoogle Scholar
  7. Carabello BA (2003) The ten most commonly asked questions about measuring left ventricular function. Cardiol Rev 11(2):58–59. doi: 10.1097/01.CRD.0000053828.38772.DC PubMedCrossRefGoogle Scholar
  8. Carrick-Ranson G, Doughty RN, Whalley GA, Walsh HJ, Gamble GD, Baldi JC (2012) The larger exercise stroke volume in endurance-trained men does not result from increased left ventricular early or late inflow or tissue velocities. Acta Physiol (Oxf) 205(4):520–531. doi: 10.1111/j.1748-1716.2012.02430.x CrossRefGoogle Scholar
  9. Carter JB, Banister EW, Blaber AP (2003) Effect of endurance exercise on autonomic control of heart rate. Sports Med 33(1):33–46. pii: 330103PubMedCrossRefGoogle Scholar
  10. Choi JO, Shin DH, Cho SW, Song YB, Kim JH, Kim YG, Lee SC, Park SW (2008) Effect of preload on left ventricular longitudinal strain by 2D speckle tracking. Echocardiography 25(8):873–879. doi: 10.1111/j.1540-8175.2008.00707.x PubMedCrossRefGoogle Scholar
  11. Convertino VA (1991) Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 23(12):1338–1348PubMedCrossRefGoogle Scholar
  12. Coyle EF, Hopper MK, Coggan AR (1990) Maximal oxygen uptake relative to plasma volume expansion. Int J Sports Med 11(2):116–119. doi: 10.1055/s-2007-1024774 PubMedCrossRefGoogle Scholar
  13. Currie KD, Thomas SG, Goodman JM (2009) Effects of short-term endurance exercise training on vascular function in young males. Eur J Appl Physiol 107(2):211–218. doi: 10.1007/s00421-009-1116-4 PubMedCrossRefGoogle Scholar
  14. Ehsani AA, Ogawa T, Miller TR, Spina RJ, Jilka SM (1991) Exercise training improves left ventricular systolic function in older men. Circulation 83(1):96–103PubMedCrossRefGoogle Scholar
  15. Esch BT, Bredin SS, Haykowsky MJ, Scott JM, Warburton DE (2007a) The potential role of the pericardium on diastolic filling in endurance-trained athletes under conditions of physiological stress. Appl Physiol Nutr Metab 32(2):311–317. doi: 10.1139/h06-086 PubMedCrossRefGoogle Scholar
  16. Esch BT, Scott JM, Haykowsky MJ, McKenzie DC, Warburton DE (2007b) Diastolic ventricular interactions in endurance-trained athletes during orthostatic stress. Am J Physiol Heart Circ Physiol 293(1):H409–H415. doi: 10.1152/ajpheart.00928.2006 PubMedCrossRefGoogle Scholar
  17. Fagard RH (1997) Impact of different sports and training on cardiac structure and function. Cardiol Clin 15(3):397–412PubMedCrossRefGoogle Scholar
  18. Fagard R (2003) Athlete’s heart. Heart 89(12):1455–1461PubMedCrossRefGoogle Scholar
  19. Firstenberg MS, Levine BD, Garcia MJ, Greenberg NL, Cardon L, Morehead AJ, Zuckerman J, Thomas JD (2000) Relationship of echocardiographic indices to pulmonary capillary wedge pressures in healthy volunteers. J Am Coll Cardiol 36(5):1664–1669. (pii: S0735-1097(00)00909-8)PubMedCrossRefGoogle Scholar
  20. Galderisi M, Benjamin EJ, Evans JC, D’Agostino RB, Fuller DL, Lehman B, Levy D (1993) Impact of heart rate and PR interval on Doppler indexes of left ventricular diastolic filling in an elderly cohort (the Framingham Heart Study). Am J Cardiol 72(15):1183–1187 (pii: 0002-9149(93)90991-K)PubMedCrossRefGoogle Scholar
  21. Garcia MJ, Thomas JD, Klein AL (1998) New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 32(4):865–875 (pii: S0735-1097(98)00345-3)PubMedCrossRefGoogle Scholar
  22. Gibala MJ (2007) High-intensity interval training: a time-efficient strategy for health promotion? Curr Sports Med Rep 6(4):211–213PubMedGoogle Scholar
  23. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(Pt 3):901–911. doi: 10.1113/jphysiol.2006.112094 PubMedCrossRefGoogle Scholar
  24. Gilman G, Khandheria BK, Hagen ME, Abraham TP, Seward JB, Belohlavek M (2004) Strain rate and strain: a step-by-step approach to image and data acquisition. J Am Soc Echocardiogr 17(9):1011–1020. doi: 10.1016/j.echo.2004.04.039 PubMedCrossRefGoogle Scholar
  25. Goodman JM (2000) The Athlete’s Heart. In: Shephard RJ, Åstrand P-O (eds) Endurance in Sport: Basic Scientific Considerations. Blackwell Science Ltd, London, pp 68–83CrossRefGoogle Scholar
  26. Goodman JM, Liu PP, Green HJ (2005) Left ventricular adaptations following short-term endurance training. J Appl Physiol 98(2):454–460. doi: 10.1152/japplphysiol.00258.2004 PubMedCrossRefGoogle Scholar
  27. Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, Morehead A, Kitzman D, Oh J, Quinones M, Schiller NB, Stein JH, Weissman NJ (2004) American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 17(10):1086–1119. doi: 10.1016/j.echo.2004.07.013 PubMedGoogle Scholar
  28. Green HJ, Thomson JA, Ball ME, Hughson RL, Houston ME, Sharratt MT (1984) Alterations in blood volume following short-term supramaximal exercise. J Appl Physiol 56(1):145–149PubMedGoogle Scholar
  29. Green HJ, Jones LL, Painter DC (1990) Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 22(4):488–493PubMedCrossRefGoogle Scholar
  30. Green DJ, Naylor LH, George K (2006) Cardiac and vascular adaptations to exercise. Curr Opin Clin Nutr Metab Care 9(6):677–684. doi: 10.1097/01.mco.0000247473.49284.e3 PubMedCrossRefGoogle Scholar
  31. Harris SK, Petrella RJ, Overend TJ, Paterson DH, Cunningham DA (2003) Short-term training effects on left ventricular diastolic function and oxygen uptake in older and younger men. Clin J Sport Med 13(4):245–251PubMedCrossRefGoogle Scholar
  32. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi: 10.1249/mss.0b013e3180304570 PubMedCrossRefGoogle Scholar
  33. Hopper MK, Coggan AR, Coyle EF (1988) Exercise stroke volume relative to plasma-volume expansion. J Appl Physiol 64(1):404–408PubMedGoogle Scholar
  34. Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, Lundby C (2013) Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol 115(6):785–793. doi: 10.1152/japplphysiol.00445.2013 (1985)PubMedCrossRefGoogle Scholar
  35. Kanstrup IL, Ekblom B (1982) Acute hypervolemia, cardiac performance, and aerobic power during exercise. J Appl Physiol 52(5):1186–1191PubMedGoogle Scholar
  36. Keteyian SJ, Brawner CA, Savage PD, Ehrman JK, Schairer J, Divine G, Aldred H, Ophaug K, Ades PA (2008) Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J 156(2):292–300. doi: 10.1016/j.ahj.2008.03.017 PubMedCrossRefGoogle Scholar
  37. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463. doi: 10.1016/j.echo.2005.10.005 PubMedCrossRefGoogle Scholar
  38. Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2005) Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res 19(3):527–533. doi: 10.1519/15964.1 PubMedGoogle Scholar
  39. Lee LS, Mariani JA, Sasson Z, Goodman JM (2012) Exercise with a twist: left ventricular twist and recoil in healthy young and middle-aged men, and middle-aged endurance-trained men. J Am Soc Echocardiogr 25(9):986–993. doi: 10.1016/j.echo.2012.05.018 PubMedCrossRefGoogle Scholar
  40. Levine BD, Lane LD, Buckey JC, Friedman DB, Blomqvist CG (1991) Left ventricular pressure-volume and Frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation 84(3):1016–1023PubMedCrossRefGoogle Scholar
  41. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 588(Pt 6):1011–1022. doi: 10.1113/jphysiol.2009.181743 PubMedCrossRefGoogle Scholar
  42. Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47(7):1313–1327. doi: 10.1016/j.jacc.2005.11.063 PubMedCrossRefGoogle Scholar
  43. Mier CM, Turner MJ, Ehsani AA, Spina RJ (1997) Cardiovascular adaptations to 10 days of cycle exercise. J Appl Physiol 83(6):1900–1906PubMedGoogle Scholar
  44. Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS (2001) Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol 37(1):278–285 (pii: S0735-1097(00)01056-1)PubMedCrossRefGoogle Scholar
  45. Nishimura RA, Abel MD, Housmans PR, Warnes CA, Tajik AJ (1989) Mitral flow velocity curves as a function of different loading conditions: evaluation by intraoperative transesophageal Doppler echocardiography. J Am Soc Echocardiogr 2(2):79–87PubMedGoogle Scholar
  46. Pelliccia A (1996) Determinants of morphologic cardiac adaptation in elite athletes: the role of athletic training and constitutional factors. Int J Sports Med 17(Suppl 3):S157–S163. doi: 10.1055/s-2007-972918 PubMedCrossRefGoogle Scholar
  47. Prasad A, Popovic ZB, Arbab-Zadeh A, Fu Q, Palmer D, Dijk E, Greenberg NL, Garcia MJ, Thomas JD, Levine BD (2007) The effects of aging and physical activity on Doppler measures of diastolic function. Am J Cardiol 99(12):1629–1636. doi: 10.1016/j.amjcard.2007.01.050 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M (1992) Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem 267(3):1674–1679PubMedGoogle Scholar
  49. Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32(2):332–348PubMedCrossRefGoogle Scholar
  50. Shapiro LM (1984) Physiological left ventricular hypertrophy. Br Heart J 52(2):130–135PubMedCentralPubMedCrossRefGoogle Scholar
  51. Smith ML, Hudson DL, Graitzer HM, Raven PB (1989) Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc 21(1):40–44PubMedCrossRefGoogle Scholar
  52. Spina RJ, Ogawa T, Martin WH 3rd, Coggan AR, Holloszy JO, Ehsani AA (1992) Exercise training prevents decline in stroke volume during exercise in young healthy subjects. J Appl Physiol 72(6):2458–2462PubMedGoogle Scholar
  53. Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97(1):141–147. doi: 10.1016/j.amjcard.2005.07.130 PubMedCrossRefGoogle Scholar
  54. van Beaumont W, Strand JC, Petrofsky JS, Hipskind SG, Greenleaf JE (1973) Changes in total plasma content of electrolytes and proteins with maximal exercise. J Appl Physiol 34(1):102–106PubMedGoogle Scholar
  55. Voigt JU, Lindenmeier G, Werner D, Flachskampf FA, Nixdorff U, Hatle L, Sutherland GR, Daniel WG (2002) Strain rate imaging for the assessment of preload-dependent changes in regional left ventricular diastolic longitudinal function. J Am Soc Echocardiogr 15(1):13–19 (pii: S0894731702914732)PubMedCrossRefGoogle Scholar
  56. Warburton DE, Gledhill N, Quinney HA (2000) Blood volume, aerobic power, and endurance performance: potential ergogenic effect of volume loading. Clin J Sport Med 10(1):59–66PubMedCrossRefGoogle Scholar
  57. Warburton DE, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Taylor DA, McGavock J, Humen DP (2004) Blood volume expansion and cardiorespiratory function: effects of training modality. Med Sci Sports Exerc 36(6):991–1000 (pii: 00005768-200406000-00012)PubMedCrossRefGoogle Scholar
  58. Warburton DE, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, Chan SY (2005) Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol 95(9):1080–1084. doi: 10.1016/j.amjcard.2004.12.063 PubMedCrossRefGoogle Scholar
  59. Wisloff U, Nilsen TI, Droyvold WB, Morkved S, Slordahl SA, Vatten LJ (2006) A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. Eur J Cardiovasc Prev Rehabil 13(5):798–804. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  60. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115(24):3086–3094. doi: 10.1161/CIRCULATIONAHA.106.675041 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sam Esfandiari
    • 1
  • Zion Sasson
    • 2
  • Jack M. Goodman
    • 1
    • 2
    • 3
  1. 1.Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoCanada
  2. 2.Division of CardiologyUniversity Hospital Network/Mount Sinai HospitalTorontoCanada
  3. 3.Heart and Stroke/Richard Lewar Centre of ExcellenceTorontoCanada

Personalised recommendations