Advertisement

European Journal of Applied Physiology

, Volume 113, Issue 9, pp 2245–2252 | Cite as

Whole body vibration training improves leg blood flow and adiposity in patients with type 2 diabetes mellitus

  • Borja SañudoEmail author
  • Rosa Alfonso-Rosa
  • Borja del Pozo-Cruz
  • Jesus del Pozo-Cruz
  • Delfín Galiano
  • Arturo Figueroa
Original Article

Abstract

This study aimed at examined the effect of a 12-week whole body vibration (WBV) training program on leg blood flow and body composition in people with type 2 diabetes mellitus (T2DM). Forty participants were randomly assigned to either a WBV training group (WBV; n = 20) or usual-care control group (CON; n = 20). Body composition [waist circumference, waist to hip ratio (WHR), weight, height, percentage of body fat and fat-free mass], heart rate, and blood flow [femoral artery diameter, maximum systolic velocity, maximum diastolic velocity (DV), time averaged mean, pulsatility index and resistance index (RI), mean velocity (V med), and peak blood velocities (PBV)] were assessed at baseline and after 12 weeks. There were significant increases in the blood flow (p = 0.046), V med (p = 0.050), and DV (p = 0.037) after WBV compared with CON. Within-group analysis showed significant differences in V med, PBV, and DV in the WBV group. Significant decreases after the intervention in weight (p < 0.001), waist circumference (p < 0.001), WHR (p < 0.05), and body fat (p < 0.05) were also found, with significant between-groups decreases in all these outcomes in the WBV group. Significant correlations existed between changes in percent body fat and blood flow [blood flow (−0.761), V med (−0.607), PBV (−0.677), and RI (0.0510)]. WBV training can be considered an effective means to increase leg blood flow and to reduce adiposity in patients with T2DM.

Keywords

Doppler ultrasound Femoral artery Body fat Fat-free mass Vibration training 

Notes

Acknowledgments

This study was supported by University of Seville.

Conflict if interest

None declared.

Supplementary material

421_2013_2654_MOESM1_ESM.ppt (459 kb)
Supplementary Appendix (PPT 456 kb)

References

  1. Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, Trombetta M, Zoppini G, Cevese A, Bonadonna RC, Schena F, Bonora E, Lanza M, Moghetti P (2012) Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 35:676–682PubMedCrossRefGoogle Scholar
  2. Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G (1995) Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Investig 96:786–792PubMedCrossRefGoogle Scholar
  3. Behboudi L, Azarbayjani MA, Aghaalinejad H, Salavati M (2011) Effects of aerobic exercise and whole body vibration on glycaemia control in type 2 diabetic males. Asian J Sports Med 2:83–90PubMedGoogle Scholar
  4. Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8:263–271PubMedCrossRefGoogle Scholar
  5. Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM (2007) Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci 62:630–635PubMedCrossRefGoogle Scholar
  6. Button C, Anderson N, Bradford C, Cotter JD, Ainslie PN (2007) The effect of multidirectional mechanical vibration on peripheral circulation of humans. Clin Physiol Funct Imaging 27:211–216PubMedCrossRefGoogle Scholar
  7. Chudyk A, Petrella RJ (2011) Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care 34:1228–1237PubMedCrossRefGoogle Scholar
  8. Dela F, Kjaer M (2006) Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem 42:75–88PubMedCrossRefGoogle Scholar
  9. Devereux GR, Wiles JD, Swaine IL (2010) Reductions in resting blood pressure after 4 weeks of isometric exercise training. Eur J Appl Physiol 109:601–606PubMedCrossRefGoogle Scholar
  10. Egger A, Niederseer D, Diem G, Finkenzeller T, Ledl-Kurkowski E, Forstner R, Pirich C, Patsch W, Weitgasser R, Niebauer J (2012) Different types of resistance training in patients with type 2 diabetes mellitus: effects on glycemic control, muscle mass and strength. Eur J Prev Cardiol. [Epub ahead of print]Google Scholar
  11. Figueroa A, Gil R, Wong A, Hooshmand S, Park SY, Vicil F, Sanchez-Gonzalez MA (2012) Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women. Hypertens Res 35:667–672PubMedCrossRefGoogle Scholar
  12. Fjeldstad C, Palmer IJ, Bemben MG, Bemben DA (2009) Whole-body vibration augments resistance training effects on body composition in postmenopausal women. Maturitas 63:79–83PubMedCrossRefGoogle Scholar
  13. Gerich JE (2007) Type 2 diabetes mellitus is associated with multiple cardiometabolic risk factors. Clin Cornerstone 8:53–68PubMedCrossRefGoogle Scholar
  14. Hazell TJ, Thomas GW, Deguire JR, Lemon PW (2008) Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur J Appl Physiol 104:903–908PubMedCrossRefGoogle Scholar
  15. Herrero AJ, Martín J, Martín T, García-López D, Garatachea N, Jiménez B, Marín PJ (2011a) Whole-body vibration alters blood flow velocity and neuromuscular activity in Friedreich’s ataxia. Clin Physiol Funct Imaging 31:139–144PubMedGoogle Scholar
  16. Herrero AJ, Menendez H, Gil L, Martin J, Martin T, Garcia- Lopez D, Gil-Agudo A, Marín PJ (2011b) Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord 49:554–559PubMedCrossRefGoogle Scholar
  17. Iannucci CV, Capoccia D, Calabria M, Leonetti F (2007) Metabolic syndrome and adipose tissue: new clinical aspects and therapeutic targets. Curr Pharm Des 13:2148–2168PubMedCrossRefGoogle Scholar
  18. Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, Imhof H (2001) Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol 21:377–382PubMedCrossRefGoogle Scholar
  19. Lalande S, Gusso S, Hofman PL, Baldi JC (2008) Reduced leg blood flow during submaximal exercise in type 2 diabetes. Med Sci Sports Exerc 40:612–617PubMedCrossRefGoogle Scholar
  20. Lohman EB 3rd, Petrofsky JS, Maloney-Hinds C, Betts-Schwab H, Thorpe D (2007) The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit 13:CR71–CR76PubMedGoogle Scholar
  21. Lythgo N, Eser P, de Groot P, Galea M (2009) Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging 29:53–59PubMedCrossRefGoogle Scholar
  22. Machado A, Garcia-Lopez D, Gonzalez-Gallego J, Garatachea N (2010) Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports 20:200–207PubMedCrossRefGoogle Scholar
  23. Maloney-Hinds C, Petrofsky JS, Zimmerman G, Hessinger DA (2009) The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol Ther 11:39–43PubMedCrossRefGoogle Scholar
  24. Maple-Brown LJ, Piers LS, O’Rourke MF, Celermajer DS, O’Dea K (2005) Central obesity is associated with reduced peripheral wave reflection in Indigenous Australians irrespective of diabetes status. J Hypertens 23:1403–1407PubMedCrossRefGoogle Scholar
  25. Meeuwsen S, Horgan GW, Elia M (2010) The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin Nutr 29:560–566PubMedCrossRefGoogle Scholar
  26. Mikus CR, Fairfax ST, Libla JL, Boyle LJ, Vianna LC, Oberlin DJ, Uptergrove GM, Deo SH, Kim A, Kanaley JA, Fadel PJ, Thyfault JP (2011) Seven days of aerobic exercise training improves conduit artery blood flow following glucose ingestion in patients with type 2 diabetes. J Appl Physiol 111:657–664PubMedCrossRefGoogle Scholar
  27. Milanese C, Piscitelli F, Simoni C, Pugliarello R, Zancanaro C (2012) Effects of whole-body vibration with or without localized radiofrequency on anthropometry, body composition, and motor performance in young nonobese women. J Altern Complement Med 18:69–75PubMedCrossRefGoogle Scholar
  28. Okada S, Hiuge A, Makino H, Nagumo A, Takaki H, Konishi H, Goto Y, Yoshimasa Y, Miyamoto Y (2010) Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb 17:828–833PubMedCrossRefGoogle Scholar
  29. Olson TP, Dengel DR, Leon AS, Schmitz KH (2006) Moderate resistance training and vascular health in overweight women. Med Sci Sports Exerc 38:1558–1564PubMedCrossRefGoogle Scholar
  30. Piche ME, Lapointe A, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, Lemieux S (2008) Regional body fat distribution and metabolic profile in postmenopausal women. Metabolism 57:1101–1107PubMedCrossRefGoogle Scholar
  31. Regensteiner JG (2004) Type 2 diabetes mellitus and cardiovascular exercise performance. Rev Endocr Metab Disord 5:269–276PubMedCrossRefGoogle Scholar
  32. Sato Y, Nagasaki M, Kubota M, Uno T, Nakai N (2007) Clinical aspects of physical exercise for diabetes/metabolic syndrome. Diabetes Res Clin Pract 77(Suppl 1):S87–S91PubMedCrossRefGoogle Scholar
  33. Silber HA, Lima JA, Bluemke DA, Astor BC, Gupta SN, Foo TK, Ouyang P (2007) Arterial reactivity in lower extremities is progressively reduced as cardiovascular risk factors increase: comparison with upper extremities using magnetic resonance imaging. J Am Coll Cardiol 49:939–945PubMedCrossRefGoogle Scholar
  34. Snijder MB, Henry RM, Visser M, Dekker JM, Seidell JC, Ferreira I, Bouter LM, Yudkin JS, Westerhof N, Stehouwer CD (2004) Regional body composition as a determinant of arterial stiffness in the elderly: the Hoorn Study. J Hypertens 22:2339–2347PubMedCrossRefGoogle Scholar
  35. Song GE, Kim K, Lee DJ, Joo NS (2011) Whole body vibration effects on body composition in the postmenopausal Korean obese women: pilot study. Korean J Fam Med 32:399–405PubMedCrossRefGoogle Scholar
  36. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Investig 94:1172–1179PubMedCrossRefGoogle Scholar
  37. Suzuki E, Kashiwagi A, Nishio Y, Egawa K, Shimizu S, Maegawa H, Haneda M, Yasuda H, Morikawa S, Inubushi T, Kikkawa R (2001) Increased arterial wall stiffness limits flow volume in the lower extremities in type 2 diabetic patients. Diabetes Care 24:2107–2114PubMedCrossRefGoogle Scholar
  38. Terada T, Friesen A, Chahal BS, Bell GJ, McCargar LJ, Boulé NG (2013) Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pract 99(2):120–129PubMedCrossRefGoogle Scholar
  39. Vissers D, Verrijken A, Mertens I, Van Gils C, Van de Sompel A, Truijen S, Van Gaal L (2010) Effect of long-term whole body vibration training on visceral adipose tissue: a preliminary report. Obes Facts 3:93–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Borja Sañudo
    • 1
    Email author
  • Rosa Alfonso-Rosa
    • 1
  • Borja del Pozo-Cruz
    • 1
  • Jesus del Pozo-Cruz
    • 1
  • Delfín Galiano
    • 2
  • Arturo Figueroa
    • 3
  1. 1.Physical Education and Sports DepartmentUniversity of SevilleSevilleSpain
  2. 2.University Pablo de OlavideSevilleSpain
  3. 3.Department of Nutrition, Food and Exercise SciencesThe Florida State UniversityTallahasseeUSA

Personalised recommendations