Advertisement

European Journal of Applied Physiology

, Volume 113, Issue 6, pp 1523–1534 | Cite as

Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults

  • Tyler Barker
  • Thomas B. Martins
  • Harry R. Hill
  • Carl R. Kjeldsberg
  • Brian M. Dixon
  • Erik D. Schneider
  • Vanessa T. Henriksen
  • Lindell K. Weaver
Original Article

Abstract

The purpose of this study was to identify circulating cytokines, skeletal muscle strength, and peak power output in young adults with contrasting serum 25-hydroxyvitamin D (25(OH)D) concentrations. Serum 25(OH)D, inflammatory cytokines, muscle strength, and peak power output were, therefore, measured in young adults (25–42 years). Data were collected during the winter to avoid the seasonal influence on serum 25(OH)D. After serum 25(OH)D concentration measurements, subjects were separated into one of two groups: (1) vitamin D insufficient [serum 25(OH)D ≤32 ng/mL, n = 14], or (2) vitamin D sufficient [serum 25(OH)D >32 ng/mL, n = 14]. Following group allocation, serum 25(OH)D concentrations were significantly (p < 0.05) lower and pro-inflammatory cytokines [interleukin (IL)-2, IL-1β, tumor necrosis factor-α, and interferon-γ] were significantly (all p < 0.05) greater in vitamin D insufficient adults. An anti-inflammatory cytokine (i.e., IL-10; p > 0.05), peak isometric forces (p > 0.05), and peak power outputs (p > 0.05) were not significantly different between vitamin D groups. However, peak power outputs correlated with serum 25(OH)D concentrations in vitamin D insufficient (r = 0.55, p < 0.05) but not in vitamin D sufficient adults (r = −0.27, p = 0.36). Based on these data, we conclude that vitamin D insufficiency, in part, could result in pro-inflammatory stress without altering muscular strength or function in young adults. Future research investigating the causality of the correlation between low-serum 25(OH)D and peak power output in young adults is required.

Keywords

Vitamin D Cytokines Skeletal muscle strength 

Notes

Acknowledgments

We would like to thank the subjects who participated in this study; Penny Snow, Kristi Thunell and Michelle (Shelly) Oliver (The Orthopedic Specialty Hospital) for the phlebotomy; the late Adam S. Dern (USANA Health Sciences, Inc.) for serum sample preparations; and Stephen C. Swanson (Athletic Republic) and Saunders Whittlesey for technical support. This study was funded in part by the Intermountain Research and Medical Foundation (Intermountain Healthcare, Salt Lake City, UT, USA) and the ARUP Institute for Clinical and Experimental Pathology (Salt Lake City, UT, USA).

Conflict of interest

There are no conflicts of interest to report by any of the authors.

References

  1. Barker T, Leonard SW, Hansen J, Trawick RH, Ingram R, Burdett G, Lebold KM, Walker JA, Traber MG (2009) Vitamin E and C supplementation does not ameliorate muscle dysfunction following anterior cruciate ligament surgery. Free Radic Biol Med 47:1611–1618PubMedCrossRefGoogle Scholar
  2. Barker T, Martins TB, Hill HR, Kjeldsberg CR, Trawick RH, Weaver LK, Traber MG (2011) Low vitamin D impairs strength recovery after anterior cruciate ligament surgery. J Evid Based Compliment Altern Med 16:201–209CrossRefGoogle Scholar
  3. Barker T, Martins TB, Hill HR, Kjeldsberg CR, Henriksen VT, Dixon BM, Schneider ED, Dern A, Weaver LK (2012) Different doses of supplemental vitamin D maintain interleukin-5 without altering skeletal muscle strength: a randomized, double-blind, placebo-controlled study in vitamin D sufficient adults. Nutr Metab (Lond) 9:16CrossRefGoogle Scholar
  4. Barnes MS, Horigan G, Cashman KD, Hill TR, Forsythe LK, Lucey AJ, McSorley EM, Kiely M, Bonham MP, Magee PJ, Strain JJ, Wallace JM (2011) Maintenance of wintertime vitamin D status with cholecalciferol supplementation is not associated with alterations in serum cytokine concentrations among apparently healthy younger or older adults. J Nutr 141:476–481PubMedCrossRefGoogle Scholar
  5. Bellia A, Garcovich C, D’Adamo M, Lombardo M, Tesauro M, Donadel G, Gentileschi P, Lauro D, Federici M, Lauro R, Sbraccia P (2011) Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med. doi: 10.1007/s11739-011-0559-x PubMedGoogle Scholar
  6. Beyer I, Njemini R, Bautmans I, Demanet C, Bergmann P, Mets T (2012) Inflammation-related muscle weakness and fatigue in geriatric patients. Exp Gerontol 47:52–59PubMedCrossRefGoogle Scholar
  7. Bhalla AK, Amento EP, Krane SM (1986) Differential effects of 1,25-dihydroxyvitamin D3 on human lymphocytes and monocyte/macrophages: inhibition of interleukin-2 and augmentation of interleukin-1 production. Cell Immunol 98:311–322PubMedCrossRefGoogle Scholar
  8. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W (2004a) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19:265–269PubMedCrossRefGoogle Scholar
  9. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004b) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr 80:752–758PubMedGoogle Scholar
  10. Boland RL (2011) VDR activation of intracellular signaling pathways in skeletal muscle. Mol Cell Endocrinol 347:11–16PubMedCrossRefGoogle Scholar
  11. Cannell JJ, Hollis BW, Sorenson MB, Taft TN, Anderson JJ (2009) Athletic performance and vitamin D. Med Sci Sports Exerc 41:1102–1110PubMedCrossRefGoogle Scholar
  12. Carrillo AE, Flynn MG, Pinkston C, Markofski MM, Jiang Y, Donkin SS, Teegarden D (2012) Vitamin D supplementation during exercise training does not alter inflammatory biomarkers in overweight and obese subjects. Eur J Appl Physiol 112(8):3045–3052PubMedCrossRefGoogle Scholar
  13. Ceglia L (2008) Vitamin D and skeletal muscle tissue and function. Mol Aspects Med 29:407–414PubMedCrossRefGoogle Scholar
  14. Ceglia L, Chiu GR, Harris SS, Araujo AB (2011) Serum 25-hydroxyvitamin D concentration and physical function in adult men. Clin Endocrinol (Oxf) 74:370–376CrossRefGoogle Scholar
  15. Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7:439–443PubMedCrossRefGoogle Scholar
  16. Daftarian PM, Kumar A, Kryworuchko M, Diaz-Mitoma F (1996) IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. J Immunol 157:12–20PubMedGoogle Scholar
  17. de Waal MR, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220CrossRefGoogle Scholar
  18. Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D (1974) Myopathy in chronic renal failure. Q J Med 43:509–524PubMedGoogle Scholar
  19. Foo LH, Zhang Q, Zhu K, Ma G, Hu X, Greenfield H, Fraser DR (2009) Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr 139:1002–1007PubMedCrossRefGoogle Scholar
  20. Gannage-Yared MH, Azoury M, Mansour I, Baddoura R, Halaby G, Naaman R (2003) Effects of a short-term calcium and vitamin D treatment on serum cytokines, bone markers, insulin and lipid concentrations in healthy post-menopausal women. J Endocrinol Invest 26:748–753PubMedGoogle Scholar
  21. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H, Charles P, Eriksen EF (2000) Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 66:419–424PubMedCrossRefGoogle Scholar
  22. Gloth FM III, Smith CE, Hollis BW, Tobin JD (1995) Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D-deficient older people. J Am Geriatr Soc 43:1269–1271PubMedGoogle Scholar
  23. Heaney RP, Dowell MS, Hale CA, Bendich A (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146PubMedGoogle Scholar
  24. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281PubMedCrossRefGoogle Scholar
  25. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT, Petruschke RA, Chen E, de Papp AE (2005) Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90:3215–3224PubMedCrossRefGoogle Scholar
  26. Houston DK, Tooze JA, Davis CC, Chaves PH, Hirsch CH, Robbins JA, Arnold AM, Newman AB, Kritchevsky SB (2011) Serum 25-hydroxyvitamin d and physical function in older adults: the cardiovascular health study all stars. J Am Geriatr Soc 59:1793–1801PubMedCrossRefGoogle Scholar
  27. Iho S, Kura F, Sugiyama H, Takahashi T, Hoshino T (1985) The role of monocytes in the suppression of PHA-induced proliferation and IL 2 production of human mononuclear cells by 1,25-dihydroxyvitamin D3. Immunol Lett 11:331–336PubMedCrossRefGoogle Scholar
  28. Inanir A, Ozoran K, Tutkak H, Mermerci B (2004) The effects of calcitriol therapy on serum interleukin-1, interleukin-6 and tumour necrosis factor-alpha concentrations in post-menopausal patients with osteoporosis. J Int Med Res 32:570–582PubMedCrossRefGoogle Scholar
  29. Institute of Medicine (2010) Dietary reference intakes for calcium and vitamin D. The National Academies Press, Washington, DCGoogle Scholar
  30. Irani PF (1976) Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry 39:686–693PubMedCrossRefGoogle Scholar
  31. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K, Sansom DM (2009) 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183:5458–5467PubMedCrossRefGoogle Scholar
  32. Jorde R, Sneve M, Torjesen PA, Figenschau Y, Goransson LG, Omdal R (2010) No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine 50:175–180PubMedCrossRefGoogle Scholar
  33. Kasahara T, Hooks JJ, Dougherty SF, Oppenheim JJ (1983) Interleukin 2-mediated immune interferon (IFN-gamma) production by human T cells and T cell subsets. J Immunol 130:1784–1789PubMedGoogle Scholar
  34. Kasid A, Director EP, Rosenberg SA (1989) Induction of endogenous cytokine-mRNA in circulating peripheral blood mononuclear cells by IL-2 administration to cancer patients. J Immunol 143:736–739PubMedGoogle Scholar
  35. Kelly P, Suibhne TN, Morain O, Sullivan O (2011) Vitamin D status and cytokine levels in patients with Crohn’s disease. Int J Vitam Nutr Res 81:205–210PubMedCrossRefGoogle Scholar
  36. Khoo AL, Chai LY, Koenen HJ, Kullberg BJ, Joosten I, van der Ven AJ, Netea MG (2011a) 1,25-Dihydroxyvitamin D3 modulates cytokine production induced by Candida albicans: impact of seasonal variation of immune responses. J Infect Dis 203:122–130PubMedCrossRefGoogle Scholar
  37. Khoo AL, Chai LY, Koenen HJ, Sweep FC, Joosten I, Netea MG, van der Ven AJ (2011b) Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol 164:72–79PubMedCrossRefGoogle Scholar
  38. Lappe JM (2011) The role of vitamin D in human health: a paradigm shift. J Evid Based Complement Altern Med 16:58–72CrossRefGoogle Scholar
  39. Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC (1985) 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J Immunol 134:3032–3035PubMedGoogle Scholar
  40. Levinger I, Levinger P, Trenerry MK, Feller JA, Bartlett JR, Bergman N, McKenna MJ, Cameron-Smith D (2011) Increased inflammatory cytokine expression in the vastus lateralis of patients with knee osteoarthritis. Arthr Rheum 63:1343–1348CrossRefGoogle Scholar
  41. Lysandropoulos AP, Jaquiery E, Jilek S, Pantaleo G, Schluep M, Du Pasquier RA (2011) Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. J Neuroimmunol 233:240–244PubMedCrossRefGoogle Scholar
  42. Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT (2003) Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J Neuroimmunol 134:128–132PubMedCrossRefGoogle Scholar
  43. Marantes I, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ III, Amin S (2011) Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res 26:2860–2871PubMedCrossRefGoogle Scholar
  44. Martins TB, Pasi BM, Pickering JW, Jaskowski TD, Litwin CM, Hill HR (2002) Determination of cytokine responses using a multiplexed fluorescent microsphere immunoassay. Am J Clin Pathol 118:346–353PubMedCrossRefGoogle Scholar
  45. Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL, Hill HR (2006) Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay. Am J Clin Pathol 125:906–913PubMedCrossRefGoogle Scholar
  46. Mastaglia SR, Seijo M, Muzio D, Somoza J, Nunez M, Oliveri B (2011) Effect of vitamin D nutritional status on muscle function and strength in healthy women aged over sixty-five years. J Nutr Health Aging 15:349–354PubMedCrossRefGoogle Scholar
  47. Miller RR, Shardell MD, Hicks GE, Cappola AR, Hawkes WG, Yu-Yahiro JA, Magaziner J (2008) Association between interleukin-6 and lower extremity function after hip fracture—the role of muscle mass and strength. J Am Geriatr Soc 56:1050–1056PubMedCrossRefGoogle Scholar
  48. Numerof RP, Aronson FR, Mier JW (1988) IL-2 stimulates the production of IL-1 alpha and IL-1 beta by human peripheral blood mononuclear cells. J Immunol 141:4250–4257PubMedGoogle Scholar
  49. Penna G, Adorini L (2000) 1 Alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411PubMedGoogle Scholar
  50. Prineas JW, Mason AS, Henson RA (1965) Myopathy in metabolic bone disease. Br Med J 1:1034–1036PubMedCrossRefGoogle Scholar
  51. Reichel H, Koeffler HP, Tobler A, Norman AW (1987) 1 alpha,25-dihydroxyvitamin D3 inhibits gamma-interferon synthesis by normal human peripheral blood lymphocytes. Proc Natl Acad Sci USA 84:3385–3389PubMedCrossRefGoogle Scholar
  52. Rigby WF, Stacy T, Fanger MW (1984) Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest 74:1451–1455PubMedCrossRefGoogle Scholar
  53. Rigby WF, Denome S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest 79:1659–1664PubMedCrossRefGoogle Scholar
  54. Russell JA (1994) Osteomalacic myopathy. Muscle Nerve 17:578–580PubMedCrossRefGoogle Scholar
  55. Santos ML, Gomes WF, Pereira DS, Oliveira DM, Dias JM, Ferrioli E, Pereira LS (2011) Muscle strength, muscle balance, physical function and plasma interleukin-6 (IL-6) levels in elderly women with knee osteoarthritis (OA). Arch Gerontol Geriatr 52:322–326PubMedCrossRefGoogle Scholar
  56. Saraya KA, Balkwill FR (1993) Temporal sequence and cellular origin of interleukin-2 stimulated cytokine gene expression. Br J Cancer 67:514–521PubMedCrossRefGoogle Scholar
  57. Scalzo P, Kummer A, Cardoso F, Teixeira AL (2010) Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 468:56–58PubMedCrossRefGoogle Scholar
  58. Schaap LA, Pluijm SM, Deeg DJ, Visser M (2006) Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 119:526.e9–526.e17CrossRefGoogle Scholar
  59. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83:754–759PubMedGoogle Scholar
  60. Schrager MA, Metter EJ, Simonsick E, Ble A, Bandinelli S, Lauretani F, Ferrucci L (2007) Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 102:919–925PubMedCrossRefGoogle Scholar
  61. Shardell M, Hicks GE, Miller RR, Kritchevsky S, Andersen D, Bandinelli S, Cherubini A, Ferrucci L (2009) Association of low vitamin D levels with the frailty syndrome in men and women. J Gerontol A Biol Sci Med Sci 64:69–75PubMedCrossRefGoogle Scholar
  62. Stockton KA, Kandiah DA, Paratz JD, Bennell KL (2011) Fatigue, muscle strength and vitamin D status in women with systemic lupus erythematosus compared to healthy controls. Lupus 21:271–278PubMedCrossRefGoogle Scholar
  63. Stubbs JR, Idiculla A, Slusser J, Menard R, Quarles LD (2010) Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J Am Soc Nephrol 21:353–361PubMedCrossRefGoogle Scholar
  64. Thien R, Baier K, Pietschmann P, Peterlik M, Willheim M (2005) Interactions of 1 alpha,25-dihydroxyvitamin D3 with IL-12 and IL-4 on cytokine expression of human T lymphocytes. J Allergy Clin Immunol 116:683–689PubMedCrossRefGoogle Scholar
  65. Toth MJ, Ades PA, Tischler MD, Tracy RP, LeWinter MM (2006) Immune activation is associated with reduced skeletal muscle mass and physical function in chronic heart failure. Int J Cardiol 109:179–187PubMedCrossRefGoogle Scholar
  66. Vieth R, Carter G (2001) Difficulties with vitamin D nutrition research: objective targets of adequacy, and assays for 25-hydroxyvitamin D. Eur J Clin Nutr 55:221–222PubMedCrossRefGoogle Scholar
  67. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326–M332PubMedCrossRefGoogle Scholar
  68. Visser M, Deeg DJ, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772PubMedCrossRefGoogle Scholar
  69. Walsmith J, Roubenoff R (2002) Cachexia in rheumatoid arthritis. Int J Cardiol 85:89–99PubMedCrossRefGoogle Scholar
  70. Wang Y, DeLuca HF (2011) Is the vitamin d receptor found in muscle? Endocrinology 152:354–363PubMedCrossRefGoogle Scholar
  71. Ward KA, Das G, Berry JL, Roberts SA, Rawer R, Adams JE, Mughal Z (2009) Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab 94:559–563PubMedCrossRefGoogle Scholar
  72. Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R, Mughal MZ (2010) A randomized, controlled trial of vitamin D supplementation upon musculosketal health in postmenarchal females. J Clin Endocrinol Metab 95:4643–4651PubMedCrossRefGoogle Scholar
  73. Weber-Carstens S, Deja M, Koch S, Spranger J, Bubser F, Wernecke KD, Spies CD, Spuler S, Keh D (2010) Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care 14:R119PubMedCrossRefGoogle Scholar
  74. Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065PubMedCrossRefGoogle Scholar
  75. Willheim M, Thien R, Schrattbauer K, Bajna E, Holub M, Gruber R, Baier K, Pietschmann P, Reinisch W, Scheiner O, Peterlik M (1999) Regulatory effects of 1alpha,25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. J Clin Endocrinol Metab 84:3739–3744PubMedCrossRefGoogle Scholar
  76. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693PubMedGoogle Scholar
  77. Yende S, Waterer GW, Tolley EA, Newman AB, Bauer DC, Taaffe DR, Jensen R, Crapo R, Rubin S, Nevitt M, Simonsick EM, Satterfield S, Harris T, Kritchevsky SB (2006) Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax 61:10–16PubMedCrossRefGoogle Scholar
  78. Yusupov E, Li-Ng M, Pollack S, Yeh JK, Mikhail M, Aloia JF (2010) Vitamin D and serum cytokines in a randomized clinical trial. Int J Endocrinol 2010:1–7Google Scholar
  79. Zhang Y, Leung DYM, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188:2127–2135PubMedCrossRefGoogle Scholar
  80. Ziambaras K, Dagogo-Jack S (1997) Reversible muscle weakness in patients with vitamin D deficiency. West J Med 167:435–439PubMedGoogle Scholar
  81. Zittermann A, Frisch S, Berthold HK, Gotting C, Kuhn J, Kleesiek K, Stehle P, Koertke H, Koerfer R (2009) Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr 89:1321–1327PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tyler Barker
    • 1
  • Thomas B. Martins
    • 2
  • Harry R. Hill
    • 2
    • 3
  • Carl R. Kjeldsberg
    • 2
    • 3
  • Brian M. Dixon
    • 4
  • Erik D. Schneider
    • 4
  • Vanessa T. Henriksen
    • 1
  • Lindell K. Weaver
    • 5
    • 6
    • 7
  1. 1.The Orthopedic Specialty HospitalMurrayUSA
  2. 2.ARUP LaboratoriesInstitute for Clinical and Experimental PathologySalt Lake CityUSA
  3. 3.Department of PathologyUniversity of UtahSalt Lake CityUSA
  4. 4.USANA Health Sciences, IncSalt Lake CityUSA
  5. 5.Hyperbaric MedicineIntermountain Medical CenterMurrayUSA
  6. 6.LDS HospitalSalt Lake CityUSA
  7. 7.School of MedicineUniversity of UtahSalt Lake CityUSA

Personalised recommendations