European Journal of Applied Physiology

, Volume 113, Issue 4, pp 1091–1098 | Cite as

Sex differences in central and peripheral mechanisms of fatigue in cyclists

  • Beth W. Glace
  • Ian J. Kremenic
  • Malachy P. McHugh
Original Article

Abstract

We examined peripheral versus central contributions to fatigue in men and women during prolonged cycling using a peripheral nerve magnetic stimulation-based technique. 11 men (41 ± 3 years) and 9 women (38 ± 2 years) cycled for 2 h at ventilatory threshold with 5, 1-min sprints interspersed, followed by a 3-km time trial. Quadriceps strength testing was performed isometrically in a semi-reclined position pre- and post-cycling: (1) MVC; (2) MVC with superimposed 3-s magnetic stimulation to measure central activation ratio (CAR), a measure of central fatigue; (3) peripheral magnetic stimulation (PMS) alone of the femoral nerve in a 4-s pulse train, a measure of peripheral fatigue. Data were analyzed with mixed model ANOVA. When adjusted for body mass, men and women had similar strength (p = 0.876), and changes in MVC with time were similar between sexes, declining 22 % in men and 16 % in women (p = 0.360). CAR was similar between sexes and decreased 15 % (effect of time, p < 0.001). Changes in PMS-elicited force were different between sexes: only men lost stimulated strength (6.30 to 5.21 vs. 5.48 to 5.53 N kg−1, interaction p = 0.036). Results clearly demonstrate that quadriceps fatigue after >2 h of cycling was of both central and peripheral origin in men but solely due to central mechanisms in women.

Keywords

Exercise Gender Endurance Neuromuscular stimulation 

Abbreviations

AUG

Voluntary contraction augmented with superimposed magnetic stimulation

CAR

Central activation ratio

MVC

Maximal voluntary contraction

PMS

Peripheral magnetic stimulation

RQ

Respiratory quotient

RPE

Rating of perceived exertion

VO2

Oxygen consumption

VOL

Voluntary contraction

VT

Ventilatory threshold

Notes

Ethical standards

The experiments performed comply with the current laws of the United States and were approved by the Institutional review Board of Lenox Hill Hospital.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albert WJ, Wrigley AT, McLean RB, Sleivert GG (2006) Sex differences in the rate of fatigue development and recovery. Dyn Med 5:2. doi: 10.1186/1476-5918-5-2 PubMedCrossRefGoogle Scholar
  2. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  3. Caiozzo VJ, Davis JA, Ellis JF et al (1982) A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol 53:1184–1189PubMedGoogle Scholar
  4. Campbell C, Prince D, Braun M et al (2008) Carbohydrate-supplement form and exercise performance. Int J Sport Nutr Exerc Metab 18:179–190PubMedGoogle Scholar
  5. Clark BC, Manini TM, Thé DJ et al (2003) Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol 94:2263–2272. doi: 10.1152/japplphysiol.00926.2002 PubMedGoogle Scholar
  6. Cureton KJ, Warren GL, Millard-Stafford ML et al (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55PubMedGoogle Scholar
  7. Davis J (1995) Central and peripheral factors in fatigue. J Sports Sci 13(Spec No):S49–S53. doi: 10.1080/02640419508732277
  8. Davis J, Alderson N, Welsh R (2000) Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr 72:573S–578SPubMedGoogle Scholar
  9. de Jonge XAK (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33:833–851CrossRefGoogle Scholar
  10. Glace B, McHugh M, Gleim G (1998) Effects of a 2-hour run on metabolic economy and lower extremity strength in men and women. J Orthop Sports Phys Ther 27:189–196PubMedGoogle Scholar
  11. Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37:113–122. doi: 10.1097/JES.0b013e3181aa63e2 PubMedCrossRefGoogle Scholar
  12. Hunter S, Enoka R (2001) Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. J Appl Physiol 91:2686–2694PubMedGoogle Scholar
  13. Hunter SK, Schletty JM, Schlachter KM et al (2006) Active hyperemia and vascular conductance differ between men and women for an isometric fatiguing contraction. J Appl Physiol 101:140–150. doi: 10.1152/japplphysiol.01567.2005 PubMedCrossRefGoogle Scholar
  14. Jeukendrup AE (2011) Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci 29(Suppl 1):S91–S99. doi: 10(1080/02640414),2011,610348 PubMedCrossRefGoogle Scholar
  15. Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823. doi: 10.1152/japplphysiol.00091.2002 PubMedGoogle Scholar
  16. Kremenic IJ, Ben-Avi SS, Leonhardt D, McHugh MP (2004) Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve. Muscle Nerve 30:379–381. doi: 10.1002/mus.20091 PubMedCrossRefGoogle Scholar
  17. Kremenic IJ, Glace BW, Ben-Avi SS et al (2009) Central fatigue after cycling evaluated using peripheral magnetic stimulation. Med Sci Sports Exerc 41:1461–1466. doi: 10.1249/MSS.0b013e318199eb75 PubMedCrossRefGoogle Scholar
  18. Larivière C, Gravel D, Gagnon D et al (2006) Gender influence on fatigability of back muscles during intermittent isometric contractions: a study of neuromuscular activation patterns. Clin Biomech (Bristol, Avon) 21:893–904. doi: 10.1016/j.clinbiomech.2006.05.004 Google Scholar
  19. Lepers R, Hausswirth C, Maffiuletti N et al (2000) Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 32:1880–1886PubMedCrossRefGoogle Scholar
  20. Lepers R, Maffiuletti NA, Rochette L et al (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493. doi: 10.1152/japplphysiol.00880.2001 PubMedGoogle Scholar
  21. Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 454:957–969. doi: 10.1007/s00424-007-0243-1 PubMedCrossRefGoogle Scholar
  22. Matsui T, Soya S, Okamoto M et al (2011) Brain glycogen decreases during prolonged exercise. J Physiol (Lond) 589:3383–3393. doi: 10.1113/jphysiol.2010.203570 CrossRefGoogle Scholar
  23. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262PubMedCrossRefGoogle Scholar
  24. Millet GY, Martin V, Lattier G, Ballay Y (2003) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198. doi: 10.1152/japplphysiol.00600.2002 PubMedGoogle Scholar
  25. Newsholme EA, Blomstrand E (2006) Branched-chain amino acids and central fatigue. J Nutr 136:274S–276SPubMedGoogle Scholar
  26. Nybo L (2003) CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc 35:589–594. doi: 10.1249/01.MSS.0000058433.85789.66 PubMedCrossRefGoogle Scholar
  27. Pascual-Leone A, Houser CM, Reese K et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130PubMedCrossRefGoogle Scholar
  28. Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94:2414–2422. doi: 10.1152/japplphysiol.01145.2002 PubMedGoogle Scholar
  29. Russ DW, Lanza IR, Rothman D, Kent-Braun JA (2005) Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 32:647–655. doi: 10.1002/mus.20396 PubMedCrossRefGoogle Scholar
  30. Sawka MN, Burke LM, Eichner ER et al (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39:377–390. doi: 10.1249/mss.0b013e31802ca597 PubMedCrossRefGoogle Scholar
  31. Tarnopolsky M (1998) Gender differences in metabolism: practical and nutritional implications. CRC Press, Boca RatonGoogle Scholar
  32. Tenaglia SA, McLellan TM, Klentrou PP (1999) Influence of menstrual cycle and oral contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol 80:76–83PubMedCrossRefGoogle Scholar
  33. Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol (Lond) 551:661–671. doi: 10.1113/jphysiol.2003.044099 CrossRefGoogle Scholar
  34. Twerenbold R, Knechtle B, Kakebeeke TH et al (2003) Effects of different sodium concentrations in replacement fluids during prolonged exercise in women. Br J Sports Med 37:300–303 (discussion 303)Google Scholar
  35. Vagg R, Mogyoros I, Kiernan MC, Burke D (1998) Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol (Lond) 507(Pt 3):919–925CrossRefGoogle Scholar
  36. Vandenbogaerde TJ, Hopkins WG (2011) Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med 41:773–792. doi: 10.2165/11590520-000000000-00000 PubMedCrossRefGoogle Scholar
  37. Verges S, Maffiuletti NA, Kerherve H et al (2009) Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol 106:701–710. doi: 10.1152/japplphysiol.01051.2007 PubMedCrossRefGoogle Scholar
  38. Virnig AG, Mcleod CR (1996) Attitudes toward eating and exercise: a comparison of runners and triathletes. J Sport Behav 19:82–90Google Scholar
  39. Yoon T, Schlinder Delap B, Griffith EE, Hunter SK (2007) Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve 36:515–524. doi: 10.1002/mus.20844 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Beth W. Glace
    • 1
  • Ian J. Kremenic
    • 1
  • Malachy P. McHugh
    • 1
  1. 1.Nicholas Institute of Sports Medicine and Athletic TraumaLenox Hill HospitalNew YorkUSA

Personalised recommendations