European Journal of Applied Physiology

, Volume 113, Issue 3, pp 743–752 | Cite as

Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance

  • Benjamin M. Carr
  • Michael J. Webster
  • Joseph C. Boyd
  • Geoffrey M. Hudson
  • Timothy P. Scheett
Original Article


The aim of the present study was to examine the effects of sodium bicarbonate (NaHCO3) administration on lower-body, hypertrophy-type resistance exercise (HRE). Using a double-blind randomized counterbalanced design, 12 resistance-trained male participants (mean ± SD; age = 20.3 ± 2 years, mass = 88.3 ± 13.2 kg, height = 1.80 ± 0.07 m) ingested 0.3 g kg−1 of NaHCO3 or placebo 60 min before initiation of an HRE regimen. The protocol employed multiple exercises: squat, leg press, and knee extension, utilizing four sets each, with 10–12 repetition-maximum loads and short rest periods between sets. Exercise performance was determined by total repetitions generated during each exercise, total accumulated repetitions, and a performance test involving a fifth set of knee extensions to failure. Arterialized capillary blood was collected via fingertip puncture at four time points and analyzed for pH, [HCO3 ], base excess (BE), and lactate [Lac]. NaHCO3 supplementation induced a significant alkaline state (pH: NaHCO3: 7.49 ± 0.02, placebo: 7.42 ± 0.02, P < 0.05; [HCO3 ]: NaHCO3: 31.50 ± 2.59, placebo: 25.38 ± 1.78 mEq L−1, P < 0.05; BE: NaHCO3: 7.92 ± 2.57, placebo: 1.08 ± 2.11 mEq L−1, P < 0.05). NaHCO3 administration resulted in significantly more total repetitions than placebo (NaHCO3: 139.8 ± 13.2, placebo: 134.4 ± 13.5), as well as significantly greater blood [Lac] after the exercise protocol (NaHCO3: 17.92 ± 2.08, placebo: 15.55 ± 2.50 mM, P < 0.05). These findings demonstrate ergogenic efficacy for NaHCO3 during HRE and warrant further investigation into chronic training applications.


Ergogenic aid Weight lifting Acid–base balance Alkalosis Fatigue 



Funding was not received for this work from the National Institutions of Health, Wellcome Trust, Howard Hughes Medical Institute, or others. The authors declare no conflict of interest. The results of the present study do not constitute endorsement by Springer. Benjamin Carr, Michael Webster, Joseph Boyd, Geoffrey Hudson, and Timothy Scheett declare no conflicts of interest.


  1. ACSM (2009) Position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708CrossRefGoogle Scholar
  2. Allen DG, Westerblad H, Lannergren J (1995) The role of intracellular acidosis in muscle fatigue. In: Gandevia SC, Enoka RM, McComas AJ, Stuart DG, Thomas CK (eds) Advances in experimental medicine and biology. Plenum Press, New York, pp 57–68Google Scholar
  3. Artioli GG, Gualano B, Coelho DF, Benatti FB, Gailey AW, Lancha AH Jr (2007) Does sodium-bicarbonate ingestion improve simulated Judo performance? Int J Sport Nutr Exerc Metab 17(2):206–217PubMedGoogle Scholar
  4. Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sport Med 35(10):841–851CrossRefGoogle Scholar
  5. Chin ER, Allen DG (1998) The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 512(3):831–840PubMedCrossRefGoogle Scholar
  6. Coombes J, McNaughton LR (1993) Effects of bicarbonate ingestion on leg strength and power during isokinetic knee flexion and extension. J Strength Cond Res 7(4):241–249Google Scholar
  7. Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W (1984) Acid–base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med 5(5):228–231PubMedCrossRefGoogle Scholar
  8. Dascombe BJ, Reaburn PR, Sirotic AC, Coutts AJ (2007) The reliability of the i-STAT clinical portable analyser. J Sci Med Sport 10(3):135–140PubMedCrossRefGoogle Scholar
  9. de Salles BF, Simao R, Miranda F, Novaes Jda S, Lemos A, Willardson JM (2009) Rest interval between sets in strength training. Sport Med 39(9):765–777CrossRefGoogle Scholar
  10. Douroudos I, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A et al (2006) Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc 38(10):1746–1753PubMedCrossRefGoogle Scholar
  11. Edge J, Bishop D, Goodman C (2006) Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 101(3):918–925PubMedCrossRefGoogle Scholar
  12. Elias AN, Wilson AF, Naqvi S, Pandian MR (1997) Effects of blood pH and blood lactate on growth hormone, prolactin, and gonadotropin release after acute exercise in male volunteers. Proc Soc Exp Biol Med 214(2):156–160PubMedGoogle Scholar
  13. Epley B (1985) Poundage chart. In: Boyd Epley Workout. Body Enterprises, Lincoln, NEGoogle Scholar
  14. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94PubMedCrossRefGoogle Scholar
  15. Fleck SJ, Kraemer WJ (1988) Resistance training: basic principles (part 1 of 4). Physician Sports Med 16:160–171Google Scholar
  16. Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679PubMedCrossRefGoogle Scholar
  17. Gao J, Costill DL, Horswill CA, Park SH (1988) Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol 58(1/2):171–174CrossRefGoogle Scholar
  18. Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise-induced growth hormone response in athletes. Sports Med 33(8):599–613PubMedCrossRefGoogle Scholar
  19. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttger HG (1994) Effect of acid–base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76(2):821–829PubMedGoogle Scholar
  20. Gotshalk LA, Loebel C, Nindl BC et al (1997) Hormonal responses of multi-set versus single set heavy resistance exercise protocols. Can J Appl Physiol 22:244–255PubMedCrossRefGoogle Scholar
  21. Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 41(2):E316–E329Google Scholar
  22. Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc 24(12):1346–1352PubMedGoogle Scholar
  23. Kraemer WJ, Harman FS, Vos NH et al (2000) Effects of exercise and alkalosis on serum insulin-like growth factor I and IGF-binding protein-3. Can J Appl Physiol 25(2):127–137PubMedCrossRefGoogle Scholar
  24. Lambert CP, Flynn MG (2002) Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 32(8):511–522PubMedCrossRefGoogle Scholar
  25. Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Häkkinen K (2005) Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res 19(3):566–571Google Scholar
  26. Matson LG, Tran ZV (1993) Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr 3(1):2–28PubMedGoogle Scholar
  27. Maughan RJ, Leiper JB, Litchfield PE (1986) The effects of induced acidosis and alkalosis on isometric endurance capacity in man. In: Dotson CO, Humphrey JH (eds) Exercise physiology: current selected research, vol 2. AMS Press, New York, pp 73–82Google Scholar
  28. McKenzie DC, Coutts KD, Stirling DR, Hoeben HH, Kuzara G (1986) Maximal work production following two levels of artificially induced metabolic alkalosis. J Sport Sci 4(1):35–38CrossRefGoogle Scholar
  29. McNaughton L, Siegler J, Midgley A (2008) Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep 7(4):230–236PubMedGoogle Scholar
  30. Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75(4):1654–1660PubMedGoogle Scholar
  31. Messonnier L, Kristensen M, Juel C, Denis C (2007) Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol 102(5):1936–1944PubMedCrossRefGoogle Scholar
  32. Portington KJ, Pascoe DD, Webster MJ, Anderson LH, Rutland RR, Gladden LB (1998) Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc 30(4):523–528PubMedCrossRefGoogle Scholar
  33. Raymer GH, Marsh GD, Kowalchuk JM, Terry TR (2004) Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 96(6):2050–2056PubMedCrossRefGoogle Scholar
  34. Rico H, Paez E, Aznar L, Hernandez ER, Seco S, Villa LF (2001) Effects of sodium bicarbonate supplementation on axial and peripheral bone mass in rats on strenuous treadmill training exercise. J Bone Miner Metab 19:97–101PubMedCrossRefGoogle Scholar
  35. Siegler JC, Hirscher K (2010) Sodium bicarbonate ingestion and boxing performance. J Strength Cond Res 24(1):103–108PubMedCrossRefGoogle Scholar
  36. Siegler JC, Midgley AW, Polman RC, Lever R (2010) Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res 24(9):2551–2557PubMedCrossRefGoogle Scholar
  37. Smilios I, Pilianidis T, Karamouzis M, Tokmakidis SP (2003) Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc 35(4):644–654PubMedCrossRefGoogle Scholar
  38. Stephens TJ, McKenna MJ, Canny BJ, Snow RJ, McConell GK (2002) Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 34(4):614–621PubMedCrossRefGoogle Scholar
  39. Sutton JR, Jones NL, Toews CJ (1976) Growth hormone secretion in acid–base alterations at rest and during exercise. Clin Sci 50(4):241–247Google Scholar
  40. Sutton JR, Jones NL, Toews CJ (1981) Effect of pH on muscle glycolysis during exercise. Clin Sci 61(3):331–338PubMedGoogle Scholar
  41. Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ (2001) Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sport 4(4):431–446PubMedCrossRefGoogle Scholar
  42. Trivedi B, Danforth WH (1966) Effects of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 241:4110–4114PubMedGoogle Scholar
  43. Verbitsky O, Mizrahi J, Levin M, Isakov E (1997) Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 83(2):333–337PubMedGoogle Scholar
  44. Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J (2010) Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res 20(5):380–385PubMedCrossRefGoogle Scholar
  45. Webster MJ, Webster MN, Crawford RE, Gladden LB (1993) Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sport Exerc 25(8):960–965CrossRefGoogle Scholar
  46. Zajac A, Cholewa J, Poprzecki S, Waskiewicz Z, Langfort J (2009) Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J Sports Sci Med 8(1):45–50Google Scholar
  47. Zavorsky GS, Lands LC, Schneider W, Carli F (2005) Comparison of fingertip to arterial blood samples at rest and during exercise. Clin J Sport Med 15(4):263–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Benjamin M. Carr
    • 1
    • 2
  • Michael J. Webster
    • 1
  • Joseph C. Boyd
    • 1
  • Geoffrey M. Hudson
    • 1
  • Timothy P. Scheett
    • 3
  1. 1.School of Human Performance and Recreation, University of Southern MississippiHattiesburgUSA
  2. 2.Department of Sports Medicine and Exercise ScienceBelhaven UniversityJacksonUSA
  3. 3.Department of Health and Human PerformanceCollege of CharlestonCharlestonUSA

Personalised recommendations