Advertisement

European Journal of Applied Physiology

, Volume 113, Issue 1, pp 157–165 | Cite as

Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people

  • Camila Fabiana Rossi Squarcini
  • Maria Laura Nogueira Pires
  • Cleide Lopes
  • Ana Amélia Benedito-Silva
  • Andrea Maculano Esteves
  • Germaine Cornelissen-Guillaume
  • Carolina Matarazzo
  • Danilo Garcia
  • Maria Stella Peccin da Silva
  • Sergio Tufik
  • Marco Túlio de Mello
Original Article

Abstract

Light is the major synchronizer of circadian rhythms. In the absence of light, as for totally blind people, some variables, such as body temperature, have an endogenous period that is longer than 24 h and tend to be free running. However, the circadian rhythm of muscle strength and reaction time in totally blind people has not been defined in the literature. The objective of this study was to determine the period of the endogenous circadian rhythm of the isometric and isokinetic contraction strength and simple reaction time of totally blind people. The study included six totally blind people with free-running circadian rhythms and four sighted people (control group). Although the control group required only a single session to determine the circadian rhythm, the blind people required three sessions to determine the endogenous period. In each session, isometric strength, isokinetic strength, reaction time, and body temperature were collected six different times a day with an interval of at least 8 h. The control group had better performance for strength and reaction time in the afternoon. For the blind, this performance became delayed throughout the day. Therefore, we conclude that the circadian rhythms of strength and simple reaction time of totally blind people are within their free-running periods. For some professionals, like the blind paralympic athletes, activities that require large physiological capacities in which the maximum stimulus should match the ideal time of competition may result in the blind athletes falling short of their expected performance under this free-running condition.

Keywords

Chronobiology disorders Isokinetic strength Isometric strength Paralympics athletes 

Notes

Acknowledgments

The authors would like to thank Centro de Estudos em Psicobiologia e Exercício (CEPE). The study was awarded a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-CEPID 98/143033-ST and 04/11913-8 CFRS), the Associação Fundo de Incentivo à Pesquisa (AFIP) and the Centro de Estudo Multidisciplinar em Sonolência e Acidentes (CEMSA).

References

  1. Ashkenazi IE, Reinberg A, Bicakova-Rocher A, Ticher A (1993) The genetic background of individual variations of circadian-rhythm periods in healthy human adults. Am J Human Genet 52(6):1250–1259Google Scholar
  2. Atkinson G, Reilly T (1996) Circadian variation in sports performance. Sports Med 21(4):292–312PubMedCrossRefGoogle Scholar
  3. Benedito-Silva AA (1997) Aspectos metodológicos de la cronobiologia. In: Marques N, Menna-Barreto L, Golombek D (eds) Cronobiologia: Princípios y Aplicaciones. Eudeba, Buenos Aires, pp 239–262Google Scholar
  4. Blatter K, Cajochen C (2007) Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav 90(2–3):196–208PubMedCrossRefGoogle Scholar
  5. Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, Cajochen C (2006) Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res 168(2):312–317PubMedCrossRefGoogle Scholar
  6. Coldwells A, Atkinson G, Reilly T (1994) Sources of variation in back and leg dynamometry. Ergonomics 37(1):79–86PubMedCrossRefGoogle Scholar
  7. Dinges DF, Powell JW (1985) Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Inst Comp 17:652–655CrossRefGoogle Scholar
  8. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91(1):22–29PubMedCrossRefGoogle Scholar
  9. Drummond SPA, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ (2005) The neural basis of the psychomotor vigilance task. Sleep 28(9):1059–1068PubMedGoogle Scholar
  10. Giacomoni M, Edwards B, Bambaeichi E (2005) Gender differences in the circadian variations in muscle strength assessed with and without superimposed electrical twitches. Ergonomics 48(11–14):1473–1487PubMedCrossRefGoogle Scholar
  11. Graw P, Krauchi K, Knoblauch V, Wirz-Justice A, Cajochen C (2004) Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav 80(5):695–701PubMedCrossRefGoogle Scholar
  12. Greenes DS, Fleisher GR (2001) Accuracy of a noninvasive temporal artery thermometer for use in infants. Arch Pediatr Adolesc Med 155(3):376–381PubMedGoogle Scholar
  13. Hakkinen K, Kraemer WJ, Newton RU, Alen M (2001) Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand 171(1):51–62PubMedGoogle Scholar
  14. Harkness JA, Richter MB, Panayi GS, Van de Pette K, Unger A, Pownall R, Geddawi M (1982) Circadian variation in disease activity in rheumatoid arthritis. Br Med J 284(6315):551–555CrossRefGoogle Scholar
  15. Horvat M, Ray C, Nocera J, Croce R (2006) Comparison of isokinetic peak force and power in adults with partial and total blindness. Percept Mot Skills 103(1):231–237PubMedCrossRefGoogle Scholar
  16. Lewy AJ, Emens J, Sack RL, Hasler BP, Bernert RA (2003) Zeitgeber hierarchy in humans: resetting the circadian phase positions of blind people using melatonin. Chronobiol Int 20(5):837–852PubMedCrossRefGoogle Scholar
  17. Lewy AJ, Newsome DA (1983) Different types of melatonin circadian secretory rhythms in some blind subjects. J Clin Endocrinol Metab 56(6):1103–1107PubMedCrossRefGoogle Scholar
  18. Lockley SW, Dijk DJ, Kosti O, Skene DJ, Arendt J (2008) Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res 17(2):207–216PubMedCrossRefGoogle Scholar
  19. Lockley SW, Skene DJ, James K, Thapan K, Wright J, Arendt J (2000) Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 164(1):R1–R6PubMedCrossRefGoogle Scholar
  20. Lockley SW, Skene DJ, Tabandeh H, Bird AC, Defrance R, Arendt J (1997) Relationship between napping and melatonin in the blind. J Biol Rhythms 12(1):16–25PubMedCrossRefGoogle Scholar
  21. Loh S, Lamond N, Dorrian J, Roach G, Dawson D (2004) The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav Res Methods Instrum Comput 36(2):339–346PubMedCrossRefGoogle Scholar
  22. Mathiowetz V, Weber K, Volland G, Kashman N (1984) Reliability and validity of grip and pinch strength evaluations. J Hand Surg 9(2):222–226Google Scholar
  23. Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker ressetting in the suprachiasmatic nucleus. J Biol Rhythms 18(3):235–249PubMedCrossRefGoogle Scholar
  24. Miles LEM, Raynal DM, Wilson MA (1977) Blind man living in normal society has circadian rhythms of 24.9 hours. Science 198(4315):421–423Google Scholar
  25. Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98PubMedCrossRefGoogle Scholar
  26. Moore RY (1997) Circadian rhythm: basic neurobiology and clinical applications. Annu Rev Med 48:253–266PubMedCrossRefGoogle Scholar
  27. Nakagawa H, Sack RL, Lewy AJ (1992) Sleep propensity free-runs with the temperature, melatonin and cortisol rhythms in a totally blind person. Sleep 15(4):330–336PubMedGoogle Scholar
  28. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6(4):305–323PubMedGoogle Scholar
  29. Peirson S, Foster RG (2006) Melanopsin: another way of signaling light. Neuron 49(3):331–339PubMedCrossRefGoogle Scholar
  30. Reilly T, Atkinson G, Waterhouse J (2000) Chronobiology and physical performance. In: Garret WE, Kirkendall DT (eds) Exercise and sport science. Lippincott Williams & Wilkins, Philadelphia, pp 351–372Google Scholar
  31. Reilly T, Atkinson G, Waterhouse J (1997) Circadian rhythms in sports performance. In: Reilly T, Atkinson G, Waterhouse J (eds) Biological rhythms and exercise. Oxford University Press, USA, pp 38–61Google Scholar
  32. Reilly T, Waterhouse J (2009) Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol 106(3):321–332PubMedCrossRefGoogle Scholar
  33. Reinberg A, Bicakova-Rocher A, Mechkouri M, Ashkenazi I (2002) Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons. Chronobiol Int 19(6):1087–1106PubMedCrossRefGoogle Scholar
  34. Reinberg AE, Bicakova-Rocher A, Gorceix A, Ashkenazi IE, Smolensky MH (1994) Placebo effect on the circadian rhythm period tau of temperature and hand-grip strength rhythms: interindividual and gender-related difference. Chronobiol Int 11(1):45–53PubMedCrossRefGoogle Scholar
  35. Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 75(1):127–134PubMedCrossRefGoogle Scholar
  36. Sack RL, Lewy AJ (2001) Circadian rhythm sleep disorders: lessons from the blind. Sleep Med Rev 5(3):189–206PubMedCrossRefGoogle Scholar
  37. Skene DJ, Lockley SW, James K, Arendt J (1999) Correlation between urinary cortisol and 6-sulphatoxymelatonin rhythms in field studies of blind subjects. Clin Endocrinol 50(6):715–719CrossRefGoogle Scholar
  38. Touitou Y, Smolensky MH, Portaluppi F (2006) Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol Int 23(6):1083–1096PubMedCrossRefGoogle Scholar
  39. Uusi-Rasi K, Sievanen H, Rinne M, Oja P, Vuori I (2001) Bone mineral density of visually handicapped women. Clin Physiol 21(4):498–503PubMedCrossRefGoogle Scholar
  40. Van Dongen HP, Dinges DF (2005) Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med 24(2):237–249PubMedCrossRefGoogle Scholar
  41. Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Atkinson G, Kao S, Aizawa S, Reilly T (2005) The circadian rhythm of body temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–225PubMedCrossRefGoogle Scholar
  42. World Medical Association (2011) Declaration of Helsinki—ethical principles for medical research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/17c.pdf. Accessed 27 May 2011
  43. Wright KP Jr, Hull JT, Czeisler CA (2002) Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283(6):R1370–R1377PubMedGoogle Scholar
  44. Wyse JP, Mercer TH, Gleeson NP (1994) Time-of-day dependence of isokinetic leg strength and associated interday variability. Br J Sports Med 28(3):167–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Camila Fabiana Rossi Squarcini
    • 1
  • Maria Laura Nogueira Pires
    • 2
  • Cleide Lopes
    • 3
  • Ana Amélia Benedito-Silva
    • 4
  • Andrea Maculano Esteves
    • 1
    • 3
  • Germaine Cornelissen-Guillaume
    • 5
  • Carolina Matarazzo
    • 3
  • Danilo Garcia
    • 3
  • Maria Stella Peccin da Silva
    • 3
  • Sergio Tufik
    • 3
  • Marco Túlio de Mello
    • 1
    • 3
  1. 1.Universidade Estadual do Sudoeste da BahiaJequiezinho, JequiéBrazil
  2. 2.Universidade Estadual de São PauloAssisBrazil
  3. 3.Universidade Federal de São PauloSão PauloBrazil
  4. 4.Universidade de São PauloSão PauloBrazil
  5. 5.Department of Integrative Biology and PhysiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations