European Journal of Applied Physiology

, Volume 112, Issue 12, pp 4127–4134 | Cite as

Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists

  • Daryl P. Wilkerson
  • Giles M. Hayward
  • Stephen J. Bailey
  • Anni Vanhatalo
  • Jamie R. Blackwell
  • Andrew M. Jones
Original Article

Abstract

Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1–3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists performed two laboratory-based 50 mile TTs: (1) 2.5 h after consuming 0.5 L of nitrate-rich beetroot juice (BR) and (2) 2.5 h after consuming 0.5 L of nitrate-depleted BR as a placebo (PL). BR significantly elevated plasma [NO2] (BR: 472 ± 96 vs. PL: 379 ± 94 nM; P < 0.05) and reduced completion time for the 50 mile TT by 0.8 % (BR: 136.7 ± 5.6 vs. PL: 137.9 ± 6.4 min), which was not statistically significant (P > 0.05). There was a significant correlation between the increased post-beverage plasma [NO2] with BR and the reduction in TT completion time (r = −0.83, P = 0.01). Power output (PO) was not different between the conditions at any point (P > 0.05) but oxygen uptake (\( \dot{V} \)O2) tended to be lower in BR (P = 0.06), resulting in a significantly greater PO/\( \dot{V} \)O2 ratio (BR: 67.4 ± 5.5 vs. PL: 65.3 ± 4.8 W L min−1; P < 0.05). In conclusion, acute dietary supplementation with beetroot juice did not significantly improve 50 mile TT performance in well-trained cyclists. It is possible that the better training status of the cyclists in this study might reduce the physiological and performance response to NO3 supplementation compared with the moderately trained cyclists tested in earlier studies.

Keywords

Nitric oxide Efficiency Exercise tolerance Time trial 

References

  1. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM (2009) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107(4):1144–1155. doi:10.1152/japplphysiol.00722.2009 PubMedCrossRefGoogle Scholar
  2. Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109(1):135–148. doi:10.1152/japplphysiol.00046.2010 PubMedCrossRefGoogle Scholar
  3. Bateman RM, Ellis CG, Freeman DJ (2002) Optimization of nitric oxide chemiluminescence operating conditions for measurement of plasma nitrite and nitrate. Clin Chem 48(3):570–573PubMedGoogle Scholar
  4. Benjamin N, Vallance P (1994) Plasma nitrite as a marker of nitric oxide production. Lancet 344(8927):960 pii:S0140-6736(94)92317-5PubMedCrossRefGoogle Scholar
  5. Bescos R, Rodriguez FA, Iglesias X, Ferrer MD, Iborra E, Pons A (2011) Acute administration of inorganic nitrate reduces VO(2peak) in endurance athletes. Med Sci Sports Exerc 43(10):1979–1986. doi:10.1249/MSS.0b013e318217d439 PubMedCrossRefGoogle Scholar
  6. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3(4):277. doi:10.1016/j.cmet.2006.02.011 PubMedCrossRefGoogle Scholar
  7. Cermak NM, Gibala MJ, van Loon LJ (2012) Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab 22(1):64–71PubMedGoogle Scholar
  8. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505. doi:10.1038/nm954nm954 PubMedCrossRefGoogle Scholar
  9. Davison RCR, Corbett J, Ansley L (2009) Influence of temperature and protocol on the calibration of the Computrainer electromagnetically braked cycling ergometer. Int Sport Med J 10(2):66–76Google Scholar
  10. Ferreira LF, Behnke BJ (2011) A toast to health and performance! Beetroot juice lowers blood pressure and the O2 cost of exercise. J Appl Physiol 110(3):585–586. doi:10.1152/japplphysiol.01457.2010 PubMedCrossRefGoogle Scholar
  11. Govoni M, Jansson EA, Weitzberg E, Lundberg JO (2008) The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19(4):333–337. doi:10.1016/j.niox.2008.08.003 PubMedCrossRefGoogle Scholar
  12. Jensen L, Bangsbo J, Hellsten Y (2004) Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol 557(Pt 2):571–582. doi:10.1113/jphysiol.2003.057711 PubMedCrossRefGoogle Scholar
  13. Jungersten L, Ambring A, Wall B, Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol 82(3):760–764PubMedGoogle Scholar
  14. Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM (2011a) Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc 43(6):1125–1131. doi:10.1249/MSS.0b013e31821597b4 PubMedCrossRefGoogle Scholar
  15. Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Gilchrist M, Benjamin N, Jones AM (2011b) Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol 110(3):591–600. doi:10.1152/japplphysiol.01070.2010 PubMedCrossRefGoogle Scholar
  16. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 191(1):59–66. doi:10.1111/j.1748-1716.2007.01713.x CrossRefGoogle Scholar
  17. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2010) Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med 48(2):342–347. doi:10.1016/j.freeradbiomed.2009.11.006 PubMedCrossRefGoogle Scholar
  18. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 13(2):149–159. doi:10.1016/j.cmet.2011.01.004 PubMedCrossRefGoogle Scholar
  19. Lundberg JO, Govoni M (2004) Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37(3):395–400. doi:10.1016/j.freeradbiomed.2004.04.027 PubMedCrossRefGoogle Scholar
  20. McAllister RM, Laughlin MH (2006) Vascular nitric oxide: effects of physical activity, importance for health. Essays Biochem 42:119–131. doi:10.1042/bse0420119 PubMedCrossRefGoogle Scholar
  21. McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-Young RS (2007) Skeletal muscle nNOS mu protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol 293(2):R821–R828. doi:10.1152/ajpregu.00796.2006 PubMedCrossRefGoogle Scholar
  22. Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO (2001) Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand 171(1):9–16 pii:aps771PubMedGoogle Scholar
  23. Paton CD, Hopkins WG (2006) Ergometer error and biological variation in power output in a performance test with three cycle ergometers. Int J Sports Med 27(6):444–447. doi:10.1055/s-2005-865781 PubMedCrossRefGoogle Scholar
  24. Rassaf T, Lauer T, Heiss C, Balzer J, Mangold S, Leyendecker T, Rottler J, Drexhage C, Meyer C, Kelm M (2007) Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br J Sports Med 41(10):669–673 (discussion 673). doi:10.1136/bjsm.2007.035758 Google Scholar
  25. Schena F, Cuzzolin L, Rossi L, Pasetto M, Benoni G (2002) Plasma nitrite/nitrate and erythropoietin levels in cross-country skiers during altitude training. J Sports Med Phys Fitness 42(2):129–134PubMedGoogle Scholar
  26. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, Benjamin N, Winyard PG, Jones AM (2010) Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol 299(4):R1121–R1131. doi:10.1152/ajpregu.00206.2010 PubMedCrossRefGoogle Scholar
  27. Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM (2011) Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol 589(Pt 22):5517–5528. doi:10.1113/jphysiol.2011.216341 PubMedGoogle Scholar
  28. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51(3):784–790. doi:10.1161/HYPERTENSIONAHA.107.103523 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daryl P. Wilkerson
    • 1
  • Giles M. Hayward
    • 1
  • Stephen J. Bailey
    • 1
  • Anni Vanhatalo
    • 1
  • Jamie R. Blackwell
    • 1
  • Andrew M. Jones
    • 1
  1. 1.Sport and Health SciencesUniversity of ExeterExeterUK

Personalised recommendations