Advertisement

European Journal of Applied Physiology

, Volume 112, Issue 9, pp 3319–3326 | Cite as

Energy cost and body centre of mass’ 3D intracycle velocity variation in swimming

  • Pedro FigueiredoEmail author
  • Tiago M. Barbosa
  • João Paulo Vilas-Boas
  • Ricardo J. Fernandes
Original Article

Abstract

The purpose of this study was to examine the relationship between the energy cost (C) and the 3D intracycle velocity variation (IVV; swimming direction—x, vertical—y and lateral—z axes) throughout the 200 m front crawl event. Ten international level swimmers performed a maximal 200 m front crawl swim followed by 50, 100 and 150 m bouts at the same pace as in the 200 m splits. Oxygen consumption was measured during the bouts and blood samples were collected before and after each one. The C was calculated for each 50 m lap as the ratio of the total energy expenditure (three energy pathways) to the distance. A respiratory snorkel and valve system with low hydrodynamic resistance was used to measure pulmonary ventilation and to collect breathing air samples. Two above water and four underwater cameras videotaped the swim bouts and thereafter APAS was used to assess the centre of mass IVV (x, y and z components). The increase in the C was significantly associated with the increase in the IVV in x for the first 50 m lap (R = −0.83, P < 0.01). It is concluded that the IVV relationship with C in a competitive event does not present the direct relationship found in the literature, revealing a great specificity, which suggests that the relation between these two parameters could not be used as a performance predictor in competitive events.

Keywords

Biophysics Energetics Front crawl Kinematics 

Notes

Acknowledgments

This investigation was supported by grants of Portuguese Science and Technology Foundation (SFRH/BD/38462/2007) (PTDC/DES/101224/2008—FCOMP-01-0124-FEDER-009577).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Aziz Y, Karara H (1971) Direct linear transformation: from comparator coordinates into object coordinates in close range photogrammetry. In: Proceedings of the symposium on close-range photogrammetry. Church Falls, Illinois, pp 1–18Google Scholar
  2. Alberty M, Sidney M, Huot-Marchand F, Hespel JM, Pelayo P (2005) Intracyclic velocity variations and arm coordination during exhaustive exercise in front crawl stroke. Int J Sports Med 26(6):471–475. doi: 10.1055/s-2004-821110 PubMedCrossRefGoogle Scholar
  3. Alves F, Gomes-Pereira J, Pereira F (1996) Determinants of energy cost of front crawl and backstroke swimming and competitive performance. In: Troup JP, Hpllander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming VII. E & FN Spon, London, pp 185–191Google Scholar
  4. Baldari C, Bonavolonta V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol 107(1):105–111. doi: 10.1007/s00421-009-1107-5 PubMedCrossRefGoogle Scholar
  5. Barbosa TM, Keskinen KL, Fernandes R, Colaco P, Lima AB, Vilas-Boas JP (2005) Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol 93(5–6):519–523. doi: 10.1007/s00421-004-1251-x PubMedCrossRefGoogle Scholar
  6. Barbosa TM, Fernandes R, Keskinen KL, Colaco P, Cardoso C, Silva J, Vilas-Boas JP (2006a) Evaluation of the energy expenditure in competitive swimming strokes. Int J Sports Med 27(11):894–899. doi: 10.1055/s-2006-923776 PubMedCrossRefGoogle Scholar
  7. Barbosa TM, Lima F, Portela A, Novais D, Machado L, Colaço P, Gonçalves P, Fernandes R, Keskinen KL, Vilas-Boas JP (2006b) Relationships between energy cost, swimming velocity and speed fluctuation in competitive swimming strokes. Port J Sports Sci 6(S2):192–194Google Scholar
  8. Barbosa T, Silva AJ, Reis AM, Costa M, Garrido N, Policarpo F, Reis VM (2010a) Kinematical changes in swimming front Crawl and Breaststroke with the AquaTrainer snorkel. Eur J Appl Physiol 109(6):1155–1162. doi: 10.1007/s00421-010-1459-x PubMedCrossRefGoogle Scholar
  9. Barbosa TM, Bragada JA, Reis VM, Marinho DA, Carvalho C, Silva AJ (2010b) Energetics and biomechanics as determining factors of swimming performance: updating the state of the art. J Sci Med Sport 13(2):262–269. doi: 10.1016/j.jsams.2009.01.003 PubMedCrossRefGoogle Scholar
  10. Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 73(4):1644–1649PubMedGoogle Scholar
  11. Bland JM, Altman DG (1995a) Calculating correlation coefficients with repeated observations: Part 1—Correlation within subjects. BMJ 310(6977):446PubMedCrossRefGoogle Scholar
  12. Bland JM, Altman DG (1995b) Calculating correlation coefficients with repeated observations: Part 2—Correlation between subjects. BMJ 310(6980):633PubMedCrossRefGoogle Scholar
  13. Capelli C, Pendergast DR, Termin B (1998) Energetics of swimming at maximal speeds in humans. Eur J Appl Physiol Occup Physiol 78(5):385–393PubMedCrossRefGoogle Scholar
  14. Caty VY, Rouard AH, Hintzy F, Aujouannet YA, Molinari F, Knaflitz M (2006) Time–frequency parameters of wrist muscles EMG after an exhaustive freestyle test. Port J Sports Sci 6(S2):28–30Google Scholar
  15. Chatard JC, Lavoie JM, Lacour JR (1990) Analysis of determinants of swimming economy in front crawl. Eur J Appl Physiol Occup Physiol 61(1–2):88–92PubMedCrossRefGoogle Scholar
  16. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  17. Craig AB Jr, Pendergast DR (1979) Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Med Sci Sports 11(3):278–283PubMedCrossRefGoogle Scholar
  18. Craig AB Jr, Skehan PL, Pawelczyk JA, Boomer WL (1985) Velocity, stroke rate, and distance per stroke during elite swimming competition. Med Sci Sports Exerc 17(6):625–634PubMedCrossRefGoogle Scholar
  19. de Leva P (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230PubMedCrossRefGoogle Scholar
  20. di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7(2):55–72. doi: 10.1055/s-2008-1025736 PubMedCrossRefGoogle Scholar
  21. di Prampero PE, Pendergast D, Wilson D, Rennie DW (1978) Blood lactic acid concentrations in high velocity swimming. In: Eriksson B, Furberg B (eds) Swimming medicine IV. University Park Press, Baltimore, pp 249–261Google Scholar
  22. Fernandes RJ, Billat VL, Cruz AC, Colaco PJ, Cardoso CS, Vilas-Boas JP (2006) Does net energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J Sports Med Phys Fitness 46(3):373–380PubMedGoogle Scholar
  23. Figueiredo P, Vilas Boas JP, Maia J, Goncalves P, Fernandes RJ (2009) Does the hip reflect the centre of mass swimming kinematics? Int J Sports Med 30(11):779–781. doi: 10.1055/s-0029-1234059 PubMedCrossRefGoogle Scholar
  24. Figueiredo P, Sousa A, Gonçalves P, Pereira S, Soares S, Vilas-Boas JP, Fernandes RJ (2010a) Biophysical analysis of the 200 m front crawl swimming: a case study. In: Kjendlie P, Stallman R, Cabri J (eds) Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Norwegian School of Sport Science, Oslo, pp 79–81Google Scholar
  25. Figueiredo P, Vilas-Boas JP, Seifert L, Chollet D, Fernandes RJ (2010b) Inter-limb coordinative structure in a 200 m front crawl event. Open J Sports Sci 3:25–27CrossRefGoogle Scholar
  26. Figueiredo P, Machado L, Vilas-Boas JP, Fernandes RJ (2011a) Reconstruction error of calibration volume’s coordinates for 3D swimming kinematics. J Hum Kinet 29:45–50Google Scholar
  27. Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ (2011b) An energy balance of the 200 m front crawl race. Eur J Appl Physiol 111(5):767–777. doi: 10.1007/s00421-010-1696-z PubMedCrossRefGoogle Scholar
  28. Gourgoulis V, Aggeloussis N, Kasimatis P, Vezos N, Boli A, Mavromatis G (2008) Reconstruction accuracy in underwater three-dimensional kinematic analysis. J Sci Med Sport 11(2):90–95. doi: 10.1016/j.jsams.2007.02.010 PubMedCrossRefGoogle Scholar
  29. Holmer I (1974) Physiology of swimming man. Acta Physiol Scand Suppl 407:1–55PubMedGoogle Scholar
  30. Holmer I (1983) Energetics and mechanical work in swimming. In: Hollander AP, Huijing PA, Groot G (eds) Biomechanics and medicine in swimming. Human Kinetics Publishers, Champaign, pp 155–164Google Scholar
  31. Keskinen KL, Rodriguez FA, Keskinen OP (2003) Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming. Scand J Med Sci Sports 13(5):322–329PubMedCrossRefGoogle Scholar
  32. Kjendlie PL, Ingjer F, Stallman RK, Stray-Gundersen J (2004) Factors affecting swimming economy in children and adults. Eur J Appl Physiol 93(1–2):65–74. doi: 10.1007/s00421-004-1164-8 PubMedCrossRefGoogle Scholar
  33. Nigg B (1983) Selected methodology in biomechanics with respect to swimming. In: Hollander AP, Huijing PA, Groot G (eds) Biomechanics and medicine in swimming. Human Kinetics Publishers, Champaign, pp 72–80Google Scholar
  34. Potdevin F, Bril B, Sidney M, Pelayo P (2006) Stroke frequency and arm coordination in front crawl swimming. Int J Sports Med 27(3):193–198. doi: 10.1055/s-2005-837545 PubMedCrossRefGoogle Scholar
  35. Prampero PE, Francescato MP, Cettolo V (2003) Energetics of muscular exercise at work onset: the steady-state approach. Pflugers Arch 445(6):741–746. doi: 10.1007/s00424-002-0991-x PubMedGoogle Scholar
  36. Psycharakis SG, Sanders RH (2009) Validity of the use of a fixed point for intracycle velocity calculations in swimming. J Sci Med Sport 12(2):262–265. doi: 10.1016/j.jsams.2007.11.008 PubMedCrossRefGoogle Scholar
  37. Psycharakis SG, Naemi R, Connaboy C, McCabe C, Sanders RH (2010) Three-dimensional analysis of intracycle velocity fluctuations in frontcrawl swimming. Scand J Med Sci Sports 20(1):128–135. doi: 10.1111/j.1600-0838.2009.00891.x PubMedCrossRefGoogle Scholar
  38. Reis VM, Marinho DA, Barbosa FP, Reis AM, Guidetti L, Silva AJ (2010) Examining the accumulated oxygen deficit method in breaststroke swimming. Eur J Appl Physiol 109(6):1129–1135. doi: 10.1007/s00421-010-1460-4 PubMedCrossRefGoogle Scholar
  39. Ribeiro LF, Lima MC, Gobatto CA (2010) Changes in physiological and stroking parameters during interval swims at the slope of the d–t relationship. J Sci Med Sport 13(1):141–145. doi: 10.1016/j.jsams.2008.10.001 PubMedCrossRefGoogle Scholar
  40. Seifert L, Chollet D (2009) Modelling spatial-temporal and coordinative parameters in swimming. J Sci Med Sport 12(4):495–499. doi: 10.1016/j.jsams.2008.03.002 PubMedCrossRefGoogle Scholar
  41. Seifert L, Komar J, Lepretre PM, Lemaitre F, Chavallard F, Alberty M, Houel N, Hausswirth C, Chollet D, Hellard P (2010a) Swim specialty affects energy cost and motor organization. Int J Sports Med 31(9):624–630. doi: 10.1055/s-0030-1255066 PubMedCrossRefGoogle Scholar
  42. Seifert L, Toussaint HM, Alberty M, Schnitzler C, Chollet D (2010b) Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Hum Mov Sci 29(3):426–439. doi: 10.1016/j.humov.2009.11.003 PubMedCrossRefGoogle Scholar
  43. Sih BL, Stuhmiller JH (2003) The metabolic cost of force generation. Med Sci Sports Exerc 35(4):623–629. doi: 10.1249/01.MSS.0000058435.67376.49 PubMedCrossRefGoogle Scholar
  44. Stirn I, Jarm T, Kapus V, Strojnik V (2011) Evaluation of muscle fatigue during 100-m front crawl. Eur J Appl Physiol 111(1):101–113. doi: 10.1007/s00421-010-1624-2 PubMedCrossRefGoogle Scholar
  45. Toussaint HM (1990) Differences in propelling efficiency between competitive and triathlon swimmers. Med Sci Sports Exerc 22(3):409–415PubMedGoogle Scholar
  46. Toussaint HM, Beek PJ (1992) Biomechanics of competitive front crawl swimming. Sports Med 13(1):8–24PubMedCrossRefGoogle Scholar
  47. Toussaint HM, Beelen A, Rodenburg A, Sargeant AJ, de Groot G, Hollander AP, van Ingen Schenau GJ (1988a) Propelling efficiency of front-crawl swimming. J Appl Physiol 65(6):2506–2512PubMedGoogle Scholar
  48. Toussaint HM, Hollander AP, de Groot G, van Ingen Schenau GJ, Vervoorn K, de Best H, Meulemans T, Schreurs W (1988b) Measurement of efficiency in swimming man. In: Ungerechts BE, Wilkie K, Reischle K (eds) Swimming science V. Human Kinetics Publishers, Champaign, pp 45–52Google Scholar
  49. Vilas-Boas JP (1996) Speed fluctuations and energy cost of different breaststroke techniques. In: Troup JP, Hpllander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA (eds) Biomechanics and medicine in swimming VII. E & FN Spon, London, pp 167–171Google Scholar
  50. Vilas-Boas JP (2010) Biomechanics and medicine in swimming, past, present and future. In: Kjendlie KL, Stallman RK, Cabri J (eds) Biomechanics and medicine in swimming XI. Norwegian School of Sport Science, Oslo, pp 11–19Google Scholar
  51. Vilas-Boas JP, Fernandes RJ, Barbosa TM (2010) Intra-cycle velocity variations, swimming economy, performance and training in swimming. In: Seifert L, Chollet D, Mujika I (eds) World book of swimming: from science to performance. Nova Science Publishers, Inc., USA, pp 120–140Google Scholar
  52. Zamparo P, Pendergast DR, Mollendorf J, Termin A, Minetti AE (2005) An energy balance of front crawl. Eur J Appl Physiol 94(1–2):134–144. doi: 10.1007/s00421-004-1281-4 PubMedCrossRefGoogle Scholar
  53. Zamparo P, Capelli C, Pendergast D (2011) Energetics of swimming: a historical perspective. Eur J Appl Physiol 111(3):367–378. doi: 10.1007/s00421-010-1433-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pedro Figueiredo
    • 1
    • 2
    Email author
  • Tiago M. Barbosa
    • 3
    • 4
  • João Paulo Vilas-Boas
    • 1
    • 2
  • Ricardo J. Fernandes
    • 1
    • 2
  1. 1.Centre of Research, Education, Innovation and Intervention in Sport, Faculty of SportUniversity of PortoPortoPortugal
  2. 2.Porto Biomechanics LaboratoryUniversity of PortoPortoPortugal
  3. 3.Research Centre in Sport, Health and Human DevelopmentVila RealPortugal
  4. 4.Polytechnic Institute of BragançaBragançaPortugal

Personalised recommendations