Skip to main content

Advertisement

Log in

Fasudil, a Rho-kinase inhibitor, protects against excessive endurance exercise training-induced cardiac hypertrophy, apoptosis and fibrosis in rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Excessive endurance exercise training (EEET) is accompanied by cardiac remodeling, changes in ventricular function and increased heart failure risk. Fasudil, a potent Rho-kinase inhibitor, has been demonstrated to blunt cardiomyocyte hypertrophy, cardiac remodeling, and heart failure progression in pre-clinical trials and has been approved for clinical use in Japan. We examined the in vivo bioefficacy of fasudil against EEET-induced cardiac remodeling and the underlying molecular mechanisms. Male Sprague–Dawley rats were randomly divided into three groups: sedentary control (SC), EEET, and EEET with fasudil treatment (EEET-F). Rats in EEET and EEET-F groups ran on a motorized treadmill for 12 weeks. The results revealed that EEET increased myocardial hypertrophy (LV weight/tibial length), myocyte cross-sectional area, hypertrophy-related pathways (IL6/STAT3-MEK5-ERK5, calcineurin-NFATc3, p38 and JNK MAPK), hypertrophic markers (ANP/BNP), pro-apoptotic molecules (cytochrome C, cleaved caspase-3 and PARP), and fibrosis-related pathways (FGF-2-ERK1/2) and fibrosis markers (uPA, MMP-9 and -2). These pathways were then expressed lower in the EEET-F group when compared with the EEET group. The cardiac hypertrophic level, apoptotic pathway and fibrosis signaling were further inhibited in the fasudil-treated group. We systematically investigated the possible signaling pathways leading to EEET-induced cardiac hypertrophy, apoptosis and fibrosis. We also provide evidence for the novel function of fasudil in suppressing EEET-induced cardiac remodeling and impairment by multiple mechanisms, which suggests that the RhoA signaling pathway contributes to EEET-induced cardiac remodeling and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad S, Cesana F, Lamperti E, Gavras H, Yu J (2009) Attenuation of angiotensin II-induced hypertension and cardiac hypertrophy in transgenic mice overexpressing a type 1 receptor mutant. Am J Hypertens 22:1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Balakumar P, Singh M (2006) Differential role of rho-kinase in pathological and physiological cardiac hypertrophy in rats. Pharmacology 78:91–97

    Article  PubMed  CAS  Google Scholar 

  • Bartha E, Solti I, Kereskai L, Lantos J, Plozer E, Magyar K, Szabados E, Kálai T, Hideg K, Halmosi R, Sumegi B, Toth K (2009) PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovasc Res 83:501–510

    Article  PubMed  CAS  Google Scholar 

  • Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S, Mont L (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123:13–22

    Article  PubMed  Google Scholar 

  • Callejas NA, Casado M, Díaz-Guerra MJ, Boscá L, Martín-Sanz P (2001) Expression of cyclooxygenase-2 promotes the release of matrix metalloproteinase-2 and -9 in fetal rat hepatocytes. Hepatology 33:860–867

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Kuo WW, Yang JJ, Wang SG, Yeh YL, Tsai FJ, Ho YJ, Chang MH, Huang CY, Lee SD (2007) Eccentric cardiac hypertrophy was induced by long-term intermittent hypoxia in rats. Exp Physiol 92:409–416

    Article  PubMed  CAS  Google Scholar 

  • Cheng YC, Wu CH, Kuo WW, Lin JA, Wang HF, Tsai FJ, Tsai CH, Huang CY, Hsu TC, and Tzang BS (2011) Ameliorate effects of Li-Fu formula on IL-6-mediated cardiac hypertrophy in hamsters fed with a hyper-cholesterol diet. Evid Based Complement Alternat Med. doi:10.1093/ecam/neq066

  • Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, Shyur LF (2005) Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol 146:352–363

    Article  PubMed  CAS  Google Scholar 

  • Chu CH, Tzang BS, Chen LM, Kuo CH, Cheng YC, Chen LY, Tsai FJ, Tsai CH, Kuo WW, Huang CY (2008) IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells. J Endocrinol 197:381–390

    Article  PubMed  CAS  Google Scholar 

  • Coles B, Fielding CA, Rose-John S, Scheller J, Jones SA, O’Donnell VB (2007) Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. Am J Pathol 171:315–325

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (2006) Down’s syndrome: critical genes in a critical region. Nature 441:582–583

    Article  PubMed  CAS  Google Scholar 

  • Freed DH, Moon MC, Borowiec AM, Jones SC, Zahradka P, Dixon IM (2003) Cardiotrophin-1: expression in experimental myocardial infarction and potential role in post-MI wound healing. Mol Cell Biochem 254:247–256

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25

    Article  PubMed  CAS  Google Scholar 

  • Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K (2008) T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers. Life Sci 82:554–560

    Article  PubMed  CAS  Google Scholar 

  • House SL, House BE, Glascock B, Kimball T, Nusayr E, Schultz JE, Doetschman T (2010) Fibroblast growth factor 2 mediates isoproterenol-induced cardiac hypertrophy through activation of the extracellular regulated kinase. Mol Cell Pharmacol 2:143–154

    PubMed  CAS  Google Scholar 

  • Huang CY, Buchanan DL, Gordon RL Jr, Sherman MJ, Razzaq J, White K, Buetow DE (2003) Increased insulin-like growth factor-I gene expression precedes left ventricular cardiomyocyte hypertrophy in a rapidly-hypertrophying rat model system. Cell Biochem Funct 21:355–361

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lin TJ, Chen CC, Lin WT (2009) Endurance training accelerates exhaustive exercise-induced mitochondrial DNA deletion and apoptosis of left ventricle myocardium in rats. Eur J Appl Physiol 107:697–706

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lin WT, Hsu FL, Tsai PW, Hou CC (2010a) Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises. Eur J Appl Physiol 108:557–566

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lo CP, Chiu CY, Shyur LF (2010b) Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice. Br J Pharmacol 159:856–871

    Article  PubMed  CAS  Google Scholar 

  • Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, Zholos AV (2010) Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. Br J Pharmacol 159:1724–1731

    Article  PubMed  CAS  Google Scholar 

  • Koivisto E, Kaikkonen L, Tokola H, Pikkarainen S, Aro J, Pennanen H, Karvonen T, Rysä J, Kerkelä R, Ruskoaho H (2011) Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms. Mol Cell Endocrinol 338:18–27

    Article  PubMed  CAS  Google Scholar 

  • Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T (1998) Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98:346–352

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Frishman WH (2005) Rho-kinase inhibition in the therapy of cardiovascular disease. Cardiol Rev 13:285–292

    Article  PubMed  Google Scholar 

  • Lee KS, Park JH, Lim HJ, Park HY (2011) HB-EGF induces cardiomyocyte hypertrophy via an ERK5-MEF2A-COX2 signaling pathway. Cell Signal 23:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Li J, Negro A, Lopez J, Bauman AL, Henson E, Dodge-Kafka K, Kapiloff MS (2010) The mAKAPbeta scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin. J Mol Cell Cardiol 48:387–394

    Article  PubMed  CAS  Google Scholar 

  • MacNeil LG, Melov S, Hubbard AE, Baker SK, Tarnopolsky MA (2010) Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes. PLoS One 5:e10695

    Article  PubMed  Google Scholar 

  • Meléndez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56:225–231

    Article  PubMed  Google Scholar 

  • Midgley VC, Khachigian LM (2004) Fibroblast growth factor-2 induction of platelet-derived growth factor-C chain transcription in vascular smooth muscle cells is ERK-dependent but not JNK-dependent and mediated by Egr-1. J Biol Chem 279:40289–40295

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Dorn GW 2nd (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka Y, Shioyama W, Kunimoto S, Arita Y, Higuchi K, Yamamoto K, Fujio Y, Nishida K, Kuroda T, Hirota H, Yamauchi-Takihara K, Hirano T, Komuro I, Mochizuki N (2010) SHP2 mediates gp130-dependent cardiomyocyte hypertrophy via negative regulation of skeletal alpha-actin gene. J Mol Cell Cardiol 49:157–164

    Article  PubMed  CAS  Google Scholar 

  • Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN (2001) Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J 20:2757–2767

    Article  PubMed  CAS  Google Scholar 

  • Nunes KP, Rigsby CS, Webb RC (2010) RhoA/Rho-kinase and vascular diseases: what is the link? Cell Mol Life Sci 67:3823–3836

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Roldán V, Marín F, Gimeno JR, Ruiz-Espejo F, González J, Feliu E, García-Honrubia A, Saura D, de la Morena G, Valdés M, Vicente V (2008) Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy. Am Heart J 156:85–91

    Article  PubMed  Google Scholar 

  • Rullman E, Norrbom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, Gustafsson T (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812

    Article  PubMed  CAS  Google Scholar 

  • Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Takayama N, Kai H, Kudo H, Yasuoka S, Mori T, Anegawa T, Koga M, Kajimoto H, Hirooka Y, Imaizumi T (2011) Simvastatin prevents large blood pressure variability induced aggravation of cardiac hypertrophy in hypertensive rats by inhibiting RhoA/Ras-ERK pathways. Hypertens Res 34:341–347

    Article  PubMed  CAS  Google Scholar 

  • Turner N, Grose R (2010) Fibroblast growth factor signaling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  PubMed  CAS  Google Scholar 

  • Virag JA, Rolle ML, Reece J, Hardouin S, Feigl EO, Murry CE (2007) Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 171:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, da Cunha V, Martin-McNulty B, Vincelette J, Li W, Choy DF, Halks-Miller M, Mahmoudi M, Schroeder M, Johns A, Light DR, Dole WP (2005) Inhibition of Rho-kinase by fasudil attenuated angiotensin II-induced cardiac hypertrophy in apolipoprotein E deficient mice. Eur J Pharmacol 512:215–222

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Long B, Zhou J, Li PF (2010) miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 285:11903–11912

    Article  PubMed  CAS  Google Scholar 

  • Weng YJ, Kuo WW, Kuo CH, Tung KC, Tsai CH, Lin JA, Tsai FJ, Hsieh DJ, Huang CY, Hwang JM (2010) BNIP3 induces IL6 and calcineurin/NFAT3 hypertrophic-related pathways in H9c2 cardiomyoblast cells. Mol Cell Biochem 345:241–247

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Mou Y, Bai B, Li L, Chen GP, Hu SJ (2010) Knockdown of farnesylpyrophosphate synthase prevents angiotensin II-mediated cardiac hypertrophy. Int J Biochem Cell Biol 42:2056–2064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council of Taiwan (NSC97-2410-H029-037-MY2 and NSC99-2410-H029-059-MY2). This study is also supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004). We also thank Joel A. Newson for his careful editing of the manuscript.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Teng Lin.

Additional information

Communicated by Keith Phillip George.

T.-J. Ho, C.-C. Huang and C.-Y. Huang contributed equally to this work and appear in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, TJ., Huang, CC., Huang, CY. et al. Fasudil, a Rho-kinase inhibitor, protects against excessive endurance exercise training-induced cardiac hypertrophy, apoptosis and fibrosis in rats. Eur J Appl Physiol 112, 2943–2955 (2012). https://doi.org/10.1007/s00421-011-2270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2270-z

Keywords

Navigation